922 resultados para Wave-front coding
Resumo:
El creciente uso de dispositivos móviles y el gran avance en la mejora de las aplicaciones y sistemas inalámbricos ha impulsado la demanda de filtros paso banda miniaturizados, que trabajen a altas frecuencias y tengan unas prestaciones elevadas. Los filtros basados en resonadores Bulk Acoustic Wave (BAW) están siendo la mejor alternativa a los filtros Surface Acoustic Wave (SAW), ya que funcionan a frecuencias superiores, pueden trabajar a mayores niveles de potencia y son compatibles con la tecnología CMOS. El filtro en escalera, que utiliza resonadores BAW, es de momento la mejor opción, debido a su facilidad de diseño y su bajo coste de fabricación. Aunque el filtro con resonadores acoplados (CRF) presenta mejores prestaciones como mayor ancho de banda, menor tamaño y conversión de modos. El problema de este tipo de filtros reside en su complejidad de diseño y su elevado coste. Este trabajo lleva a cabo el diseño de un CRF a partir de unas especificaciones bastante estrictas, demostrando sus altas prestaciones a pesar de su mayor inconveniente: el coste de fabricación.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.
Resumo:
The vast majority of the biology of a newly sequenced genome is inferred from the set of encoded proteins. Predicting this set is therefore invariably the first step after the completion of the genome DNA sequence. Here we review the main computational pipelines used to generate the human reference protein-coding gene sets.
Resumo:
L'objectiu d'aquest informe és presentar l'aplicació d'una sèrie de propostes sobre transcripció, etiquetatge i codificació a dos corpus: el corpus bilingüe LC (La Canonja (Català-Espanyol)) i el corpus trilingüe CSCD (Code-switching as Communicative Design (Català-Espanyol-Anglès)). Aquestes propostes, que constitueixen l'aportació de l'equip IULA-LIPPS (Language Interaction in Plurilingual and Plurilectal Speakers) al manual de codificació del sistema LIDES (Language Interaction Database Exchange System), adoptat pel grup europeu LIPPS, poden ser útils per transcriure, etiquetar i codificar dades provinents de llengües tipològicament properes i distants.
Resumo:
OBJECTIVE: The aim of this study was to determine whether V˙O(2) kinetics and specifically, the time constant of transitions from rest to heavy (τ(p)H) and severe (τ(p)S) exercise intensities, are related to middle distance swimming performance. DESIGN: Fourteen highly trained male swimmers (mean ± SD: 20.5 ± 3.0 yr; 75.4 ± 12.4 kg; 1.80 ± 0.07 m) performed an discontinuous incremental test, as well as square wave transitions for heavy and severe swimming intensities, to determine V˙O(2) kinetics parameters using two exponential functions. METHODS: All the tests involved front-crawl swimming with breath-by-breath analysis using the Aquatrainer swimming snorkel. Endurance performance was recorded as the time taken to complete a 400 m freestyle swim within an official competition (T400), one month from the date of the other tests. RESULTS: T400 (Mean ± SD) (251.4 ± 12.4 s) was significantly correlated with τ(p)H (15.8 ± 4.8s; r=0.62; p=0.02) and τ(p)S (15.8 ± 4.7s; r=0.61; p=0.02). The best single predictor of 400 m freestyle time, out of the variables that were assessed, was the velocity at V˙O(2max)vV˙O(2max), which accounted for 80% of the variation in performance between swimmers. However, τ(p)H and V˙O(2max) were also found to influence the prediction of T400 when they were included in a regression model that involved respiratory parameters only. CONCLUSIONS: Faster kinetics during the primary phase of the V˙O(2) response is associated with better performance during middle-distance swimming. However, vV˙O(2max) appears to be a better predictor of T400.
Resumo:
In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified.
Resumo:
BACKGROUND: Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. RESULTS: We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. CONCLUSIONS: The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Resumo:
The vast majority of the biology of a newly sequenced genome is inferred from the set of encoded proteins. Predicting this set is therefore invariably the first step after the completion of the genome DNA sequence. Here we review the main computational pipelines used to generate the human reference protein-coding gene sets.
Resumo:
We implemented Biot-type porous wave equations in a pseudo-spectral numerical modeling algorithm for the simulation of Stoneley waves in porous media. Fourier and Chebyshev methods are used to compute the spatial derivatives along the horizontal and vertical directions, respectively. To prevent from overly short time steps due to the small grid spacing at the top and bottom of the model as a consequence of the Chebyshev operator, the mesh is stretched in the vertical direction. As a large benefit, the Chebyshev operator allows for an explicit treatment of interfaces. Boundary conditions can be implemented with a characteristics approach. The characteristic variables are evaluated at zero viscosity. We use this approach to model seismic wave propagation at the interface between a fluid and a porous medium. Each medium is represented by a different mesh and the two meshes are connected through the above described characteristics domain-decomposition method. We show an experiment for sealed pore boundary conditions, where we first compare the numerical solution to an analytical solution. We then show the influence of heterogeneity and viscosity of the pore fluid on the propagation of the Stoneley wave and surface waves in general.
Resumo:
BACKGROUND: : The systolic augmentation index (sAix), calculated from the central aortic pulse wave (reconstructed from the noninvasive recording of the radial pulse with applanation tonometry), is widely used as a simple index of central arterial stiffness, but has the disadvantage of also being influenced by the timing of the reflected with respect to the forward pressure wave, as shown by its inverse dependence on heart rate (HR). During diastole, the central aortic pulse also contains reflected waves, but their relationship to arterial stiffness and HR has not been studied. METHODS: : In 48 men and 45 women, all healthy, with ages ranging from 19 to 70 years, we measured pulse wave velocity (PWV, patients supine), a standard evaluator of arterial stiffness, and carried out radial applanation tonometry (patients sitting and supine). The impact of reflected waves on the diastolic part of the aortic pressure waveform was quantified in the form of a diastolic augmentation index (dAix). RESULTS: : Across ages, sexes, and body position, there was an inverse relationship between the sAix and the dAix. When PWV and HR were added as covariates to a prediction model including age, sex and body position as main factors, the sAix was directly related to PWV (P < 0.0001) and inversely to HR (P < 0.0001). With the same analysis, the dAix was inversely related to PWV (P < 0.0001) and independent of HR (P = 0.52). CONCLUSION: : The dAix has the same degree of linkage to arterial stiffness as the more conventional sAix, while being immune to the confounding effect of HR. The quantification of diastolic aortic pressure augmentation by reflected waves could be a useful adjunct to pulse wave analysis.
Resumo:
We have mapped the genes coding for two major structural polypeptides of the vaccinia virus core by hybrid selection and transcriptional mapping. First, RNA was selected by hybridization to restriction fragments of the vaccinia virus genome, translated in vitro and the products were immunoprecipitated with antibodies against the two polypeptides. This approach allowed us to map the genes to the left hand end of the largest Hind III restriction fragment of 50 kilobase pairs. Second, transcriptional mapping of this region of the genome revealed the presence of the two expected RNAs. Both RNAs are transcribed from the leftward reading strand and the 5'-ends of the genes are separated by about 7.5 kilobase pairs of DNA. Thus, two genes encoding structural polypeptides with a similar location in the vaccinia virus particle are clustered at approximately 105 kilobase pairs from the left hand end of the 180 kilobase pair vaccinia virus genome.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.