981 resultados para WM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Carl Oestreich]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

by Wm. B. Stevenson

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Carl Oestreich]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninetynine second-graders were randomly assigned to 20 sessions of computer-based adaptiveWMtraining, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient selfregulative abilities and emotional stability are necessary for WM training to be effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Findings of cerebral cortical atrophy, white matter lesions and microhemorrhages have been reported in high-altitude climbers. The aim of this study was to evaluate structural cerebral changes in a large cohort of climbers after an ascent to extreme altitudes and to correlate these findings with the severity of hypoxia and neurological signs during the climb. METHODS Magnetic resonance imaging (MRI) studies were performed in 38 mountaineers before and after participating in a high altitude (7126m) climbing expedition. The imaging studies were assessed for occurrence of new WM hyperintensities and microhemorrhages. Changes of partial volume estimates of cerebrospinal fluid, grey matter, and white matter were evaluated by voxel-based morphometry. Arterial oxygen saturation and acute mountain sickness scores were recorded daily during the climb. RESULTS On post-expedition imaging no new white matter hyperintensities were observed. Compared to baseline testing, we observed a significant cerebrospinal fluid fraction increase (0.34% [95% CI 0.10-0.58], p = 0.006) and a white matter fraction reduction (-0.18% [95% CI -0.32--0.04], p = 0.012), whereas the grey matter fraction remained stable (0.16% [95% CI -0.46-0.13], p = 0.278). Post-expedition imaging revealed new microhemorrhages in 3 of 15 climbers reaching an altitude of over 7000m. Affected climbers had significantly lower oxygen saturation values but not higher acute mountain sickness scores than climbers without microhemorrhages. CONCLUSIONS A single sojourn to extreme altitudes is not associated with development of focal white matter hyperintensities and grey matter atrophy but leads to a decrease in brain white matter fraction. Microhemorrhages indicative of substantial blood-brain barrier disruption occur in a significant number of climbers attaining extreme altitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with schizophrenia show abnormal dynamics and structure of temporally ­coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) – and three EEG bands – theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback ­targeting prestates could be beneficial as task performance relies on the preparatory state of the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Musik von Carl Maria von Weber. Gedicht von Friedrich Kind. Nach Friedrich Kinds Jubel Cantate gedichtet von A. Wendt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Carl Oestreich]