985 resultados para W. Salmon
Resumo:
Aquest projecte, s’ha desenvolupat en un marc empresarial, concretament al departamentR+D+i de l’empresa Wonesys S.L. de Sant Cugat del Vallès. L’empresa es dedica aldesenvolupament d’equipament per transmissions òptiques.Les eines de gestió dels equips existents, no satisfan els requeriments de l’empresa i amb aquest projecte es busca la implementació d’una eina per fer-ho. Entre les aplicacions actuals es pot trobar, per una banda, un sistema EMS (Element Management System) que ofereix interfíciegràfica d’usuari, però que requereix una infrastructura complexa per ser executada. Per l’altra banda, fins a tres interfícies diferents per connectar directament amb els equips, dues d’elles basades en protocols estàndard i una tercera que implementa un protocol propietari. Es tractad’interfícies d’intercanvi de text, per tant, la gestió mitjançant les mateixes es fa molt poc pràctica tot i no requerir cap infrastructura complexa com en el cas anterior. Una combinació de les virtuts de les anteriors són, a grans trets, els requeriments de la nova aplicació. Es volconstruir, doncs, una aplicació amb interfície gràfica d’usuari complerta que pugui ser accessible de forma senzilla utilitzant, tan sols, un terminal com a maquinari de suport.Un anàlisi del mercat il·lustra que hi ha molta disparitat en aplicacions similars. Hi ha grans diferències entre aplicacions de fabricants d’equipament i altres que només fan aplicacions per tercers.De les diverses possibilitats presentades per dur a terme la implementació, després d’un detingut anàlisi, es considera que la millor opció és el desenvolupament d’una aplicació web. Com l’aplicació ha de residir en un sistema Linux encastat, es fa un repàs del concepte ‘encastat’. Es defineix el terme i es dóna una mirada al mercat. Es descriuen i es comparen les arquitecturesARM i x86 i es relacionen amb el món encastat.Al tractar-se d’un sistema encastat amb arquitectura diferent a la d’un entorn web habitual, l’elecció de les eines representa un paper molt important, així com el procés de compilació i configuració d’eines que tradicionalment s’obtenen compilades.S’han escollit eines de programari lliure i dissenyades especialment per a entorns encastats. El patró de disseny usat pel desenvolupament de l’aplicació web és el Model View Controller, que facilita l’estructuració i un correcte manteniment de l’aplicació.La utilització de la tecnologia web resulta en una aplicació senzilla d’utilitzar, sense necessitat d’instal·lació de cap tipus per part de l’usuari i amb una interfície gràfica molt versàtil. La valoració per part dels usuaris de l’aplicació, tant treballadors de l’empresa en tasques dedesenvolupament i depuració, com clients en equips en explotació, és molt positiva. Tant és així, que sorgeixen opcions per reformular el sistema EMS per unificar interfícies i reaprofitar codi.
Resumo:
[Traditions. Asie. Inde. Province de Delhi. Delhi]
Resumo:
The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em-placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly deformed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhom nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glariis thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called 'mechanical paradox' which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e. nappe) would break internally rather than start moving on a low angle plane. Several solutions were proposed to solve this apparent paradox. Certainly the most successful is the theory of critical wedges (e.g. Chappie 1978; Dahlen, 1984). In this theory the orogen is considered as a whole and this change of scale allows thrust sheet like structures to form while being consistent with mechanics. However this theoiy is intricately linked to brittle rheology and fold nappes, which are inherently ductile structures, cannot be created in these models. When considering the problem of nappe emplacement from the perspective of ductile rheology the problem of strain localization arises. The aim of this thesis was to develop and apply models based on continuum mechanics and integrating heat transfer to understand the emplacement of nappes. Models were solved either analytically or numerically. In the first two papers of this thesis we derived a simple model which describes channel flow in a homogeneous material with temperature dependent viscosity. We applied this model to the Morcles fold nappe and to several kilometer-scale shear zones worldwide. In the last paper we zoomed out and studied the tectonics of (i) ductile and (ii) visco-elasto-plastic and temperature dependent wedges. In this last paper we focused on the relationship between basement and cover deformation. We demonstrated that during the compression of a ductile passive margin both fold nappes and thrust sheets can develop and that these apparently different structures constitute two end-members of a single structure (i.e. nappe). The transition from fold nappe to thrust sheet is to first order controlled by the deformation of the basement. -- Le système des nappes helvétiques en Suisse occidentale est un empilement de nappes de plis et de nappes de charriage qui se sont mis en place à faible grade métamorphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement défor-mé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Mordes et la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glariis en Suisse centrale se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. Aujourd'hui la géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général. Malgré cela, les processus mécaniques par lesquels ces nappes se sont mises en place restent mal compris. Pendant toute la première moitié du vingtième siècle les géologues les géologues ont été confrontés au «paradoxe mécanique». Celui-ci survient du fait qu'un bloc de roche haut de plusieurs kilomètres et long de plusieurs dizaines de kilomètres (i.e., une nappe) se fracturera de l'intérieur plutôt que de se déplacer sur une surface frictionnelle. Plusieurs solutions ont été proposées pour contourner cet apparent paradoxe. La solution la plus populaire est la théorie des prismes d'accrétion critiques (par exemple Chappie, 1978 ; Dahlen, 1984). Dans le cadre de cette théorie l'orogène est considéré dans son ensemble et ce simple changement d'échelle solutionne le paradoxe mécanique (la fracturation interne de l'orogène correspond aux nappes). Cette théorie est étroitement lié à la rhéologie cassante et par conséquent des nappes de plis ne peuvent pas créer au sein d'un prisme critique. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la méca-nique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous avons dérivé un modèle d'écoulement dans un chenal d'un matériel homogène dont la viscosité dépend de la température. Nous avons appliqué ce modèle à la nappe de Mordes et à plusieurs zone de cisaillement d'échelle kilométrique provenant de différents orogènes a travers le monde. Dans le dernier article nous avons considéré le problème à l'échelle de l'orogène et avons étudié la tectonique de prismes (i) ductiles, et (ii) visco-élasto-plastiques en considérant les transferts de chaleur. Nous avons démontré que durant la compression d'une marge passive ductile, a la fois des nappes de plis et des nappes de charriages peuvent se développer. Nous avons aussi démontré que nappes de plis et de charriages sont deux cas extrêmes d'une même structure (i.e. nappe) La transition entre le développement d'une nappe de pli ou d'une nappe de charriage est contrôlé au premier ordre par la déformation du socle. -- Le système des nappes helvétiques en Suisse occidentale est un emblement de nappes de plis et de nappes de chaînage qui se sont mis en place à faible grade métamoiphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement déformé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Morcles and la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glarüs en Suisse centrale est certainement l'exemple de nappe de charriage le plus célèbre au monde. Elle se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. La géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général parmi les géologues. Au contraire les processus physiques par lesquels ces nappes sont mises en place reste mal compris. Les sédiments qui forment les nappes alpines se sont déposés à l'ère secondaire et à l'ère tertiaire sur le socle de la marge européenne qui a été étiré durant l'ouverture de l'océan Téthys. Lors de la fermeture de la Téthys, qui donnera naissance aux Alpes, le socle et les sédiments de la marge européenne ont été déformés pour former les nappes alpines. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la mécanique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous nous sommes intéressés à la localisation de la déformation à l'échelle d'une nappe. Nous avons appliqué le modèle développé à la nappe de Morcles et à plusieurs zones de cisaillement provenant de différents orogènes à travers le monde. Dans le dernier article nous avons étudié la relation entre la déformation du socle et la défonnation des sédiments. Nous avons démontré que nappe de plis et nappes de charriages constituent les cas extrêmes d'un continuum. La transition entre nappe de pli et nappe de charriage est intrinsèquement lié à la déformation du socle sur lequel les sédiments reposent.
Resumo:
Kirje
Resumo:
New data on the distributibn and conservation status of some angiosperms of the Cape Verde Islands, W Africa Intensive field work aud analysis of the state of biodiversity ou all islands during the years iYY.3 lo IYYY Icd lo lhc publication ol’several contributions lo the flora and vegelalion of the archipclago of Cabo Verde (Brochniann & al. 1997, Gornes & Vera-Cruz 1993. Gonles & al. I9YSa-h. 1998, Games 1997. Kilian & Leyens 1994, Leyens 1998. Leyens & Lobin 1995, Lobin & al. 1995) as well as to the compilation of the First Red Data List for the Cape Verde Islnuds (Lcyrus & Lobin 1996). the elaboration of the National Strategy for Biodiversity Conservation (SIPA 19YY) and ! compilation of all areas in urgent need of protection (Leyens unpubl. diplonla thc.\is IYYJ. Gwnes & al. iu prep.). As part UC the activities of the lnstituto National de Invcstig;u$o c Dcscnvolvitucnto Agriirio (INIDA) and the Dcpurtamcnto de GeociSncias do Institute Supcriot de Educ;u$o t ISE) iutcnsive t’icld studies were conducted PI many diffcrctu localilics OII xcvcr;~I islands. resulting in a thesis tGo~nes IY97) and several terminal study papers (Luz IYYY. Cosi;t 1994. Gonsalvez 1999). The results show that the vegetation and flora of the islands arc still IWI fully known and much more field work is needed. hllhot~gh Sanliiqw is one of lhc islands whcrc lhc firs1 holanicill iIlVcxligilliollx wcrr c:crriul WI (Wcbh 1x49. Schruidt 1x52. Chcvalicr IY35) and where uu~ny intensive field studirs wcrc
Resumo:
Agreed upon procedures report for evaluating compliance with provisions of IowaCare (Project No 11-W-00189/7) within the Iowa Department of Human Services for the year ended June 30, 2006