880 resultados para Vitamin-k Deficiency
Resumo:
353 págs.
Resumo:
As espécies reativas de oxigênio (ERO) são geradas durante o metabolismo celular normal e podem produzir vários danos oxidativos no DNA, tais como lesões nas bases nitrogenadas ou sítios apurínico/apirimidínico (AP). Essas lesões podem acarretar acúmulo de sítios de mutações, caso esses danos não sejam reparados. Entretanto, as bactérias possuem vários mecanismos de defesa contra as ERO que desempenham um importante papel na manutenção da fisiologia. O objetivo deste trabalho foi o de avaliar se sistemas enzimáticos, como o reparo por excisão de bases (BER), sistema SOS e SoxRS, interferem em respostas como a sensibilidade aos antibióticos, aderência das células bacterianas a superfícies bióticas ou abióticas e formação de biofilme. Os mutantes utilizados no presente estudo são todos derivados de Escherichia coli K-12 e os resultados obtidos mostraram que, dos mutantes BER testados, o único que apresentou diferença no perfil de sensibilidade aos antimicrobiamos em relação à cepa selvagem (AB1157) foi o mutante xthA- (BW9091), deficiente em exonuclease III. No teste de aderência qualitativo realizado com linhagem de células HEp-2 (originária de carcinoma de laringe humana) foi observado que onze cepas da nossa coleção, apresentaram um padrão denominando like-AA, contrastando com o que era esperado para as cepas de E. coli utilizadas como controle negativo, que apresentam aderência discreta sem padrão típico. A aderência manose-sensível via fímbria do tipo I avaliada nesse estudo mostrou que essa fimbria, possui um papel relevante na intensidade da aderência e filamentação nessas cepas estudas. A filamentação é uma resposta SOS importante para que o genoma seja reparado antes de ser partilhado pelas células filhas. Além disso, com relação à formação de biofilme, oito cepas apresentaram um biofilme forte sendo que essa resposta não foi acompanhada pelo aumento da intensidade de filamentação. Nossos resultados em conjunto sugerem o envolvimento de estresse oxidativo na definição de parâmetros como sensibilidade a antimicrobianos, padrão e intensidade de aderência, filamentação e formação de biofilme nas amostras de E. coli K-12 avaliadas neste trabalho. Sugerimos que a aderência gera estresse oxidativo causando danos no DNA, o que leva a indução do sistema SOS resultando na resposta de filamentação observada.
Resumo:
A feeding trial was conducted to study the role of vitamin E in growth of Catla catla fry. Newly hatched larvae of Catla were fed with synthetic diet, supplemented with graded levels of vitamin E α0, 50, 100, 150, 200, 250 mg/Kg of diet. The spawn were fed with five times of their body weight for 30 days. Observation was made on the basis of survival, growth, daily weight gain and food conversion ratio. The significant weight gain and highest survival could be achieved by the diet supplemented with 150 mg of vitamin E per kg of the diet. The weight gain per day in 0, 50, 100, 150, 200 and 250 mg vitamin F/kg supplemented diet were 4.0, 5.2, 6.5, 7.8, 6.8 and 6.3 mg, while survival was 50, 51.8, 52.4, 52.8, 52.2 and 52% respectively.
Resumo:
Increase in body protein concentration was noted in the fry of rohu fed vitamin E at 0.0 mg, 25 mg, 50 mg, 75 mg 100 mg, 150 mg, 200 mg, 300 mg, and 400 mg/kg of formulated diet. The protein content of fry was found to be significantly different between the different levels of vitamin E. It was found to be maximum (18.7%) in the case of vitamin E at 75 mg/kg diet followed by vitamin E at 100 mg/kg diet. On increasing of vitamin E above 100 mg per kilogram diet there was further decline in the protein content of the fry. The protein increase, from the initial value (12.5%), were recorded to be 14.4%, control; 21.6%, 25 mg level; 31.2%, 50 mg level; 49.6%, 75 mg level; 45.6%, 100 mg level; 14.4%, 150 mg level; 28% 200 mg level; 29.6%, 300 mg level and 13.6% for 400 mg level in different experimental groups.
Resumo:
Effects of three different doses of vitamin D sub(3) on molting, growth, and calcium and phosphate composition of tissue and molt during the grow-out of the giant freshwater prawn Macrobrachium rosenbergii (average weight 10.56 ± 0.20 g), obtained from a grow-out pond, were studied. Intramuscular doses of vitamin D sub(3) (100, 500 and 2000 IU/kg body weight) were given on the 1st, 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 20th, 25th and 30th days. All the experimental animals were fed with a basal diet containing fish meal, shrimp meal, wheat flour, groundnut de-oiled cake, soybean meal and wheat bran at 3% of the body weight. The numbers of molts were recorded as 20±0.50, 29±1.16, 51±1.87, and 30±1.60 in control, 100, 500 and 2000 IU/kg body weight physiological doses, respectively. Maximum growth was recorded in prawns given 500 IU/ kg dose. Survival was between 58.33 ± 9.13 and 77.77 ± 8.61%. The ash content and calcium level increased significantly (p<0.05) and recorded the highest values in 500 IU/kg physiological dose. However, the inorganic phosphate (P sub(i)) content recorded the highest values in tissue in 2000 IU/kg dose (p<0.05, F = 50.60613). There is no significant difference in calcium contents (p>0.05) in both tissue and molt at 500 and 2000 IU/kg doses. It was found that a higher physiological dose (2000 IU/kg) of vitamin D sub(3) increased the rate of mortality. Results have shown that vitamin D sub(3) has a positive impact on the growth and survival of M. rosenbergii and it interferes with the metabolism of Ca and P sub(i), in tissue, and alters molting frequency. Results on physiological dose suggest an alternative and effective dietary supplementation method of vitamin D sub(3) in the grow-out phase of M. rosenbergii.
Resumo:
Distribution of vitamin B-12 in the skeletal muscle of several marine and fresh water fish and marine invertebrates are reported. The vitamin B-12 content of white muscle of various fish ranges between 0.05 and 1.5 micrograms. The elasmobranch fish, such as sharks and rays, has a lower levels of vitamin B-12. The distribution of vitamin B-12 in the red muscle, heart, brain and liver of various fish is also shown. Content in red muscle varies between 3 and 22 micrograms, averaging 8 micrograms. The values show that the heart is a rich source of vitamin B-12. Internal organs are also rich in vitamin B
Resumo:
The electrooxidation of vitamin D-2 (VD2) was studied by cyclic voltammetry and in situ circular dichroic (CD) spectroelectrochemistry for the first time, The mechanism of electrooxidation and some useful kinetic and adsorption parameters were obtained. The results showed that the oxidation of VD2 in ethanol solution is an irreversible diffusion controlled process following a weak adsorption of the electroinactive product at a glassy carbon electrode, which blocks the electrochemical reaction. The electrooxidation occurs mainly at the triene moieties of the VD2 molecule. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E-0 = 1.08 V, alphan = 0.245, the standard electrochemical rate constant k(0) = 4.30( +/- 0.58) x 10(-4) cm s(-1) and the adsorption constant beta = 1.77(+/- 0.25) were obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.
Resumo:
Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.
Resumo:
PURPOSE. To examine the association of blood antioxidants with cataract.