814 resultados para Vitamin D Assay
Resumo:
Osteoporosis imposes a tremendous burden on Australia : 1.2 million Australians have osteoporosis and 6.3 million have Osteopenia. In the 2007-08 financial year, 82000 Australians suffered fragility fractures, of Which >17000 were hip fractures. In the 2000-01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions to ensure people have adequate calcium intake, vitamin D levels and appropriate, physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50 nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, Muscle strengthening exercises and challenging balance/ mobility activities should be conducted in a safe environment.
Resumo:
THE UVI working group acknowledges the contribution of Vitamin D to bone health as stated in our paper. However, we concluded that an optimal level of Vitamin D for humans has not yet been established with any certainty...
Resumo:
Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomarotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.
Resumo:
Background Vitamin D has a range of biological effects including antiproliferative functions that are mediated through its receptors, encoded by the VDR gene. Objectives We investigated polymorphisms within the VDR gene for association with solar keratosis (SK), a biomarker for skin cancer, and examined interactions with skin phenotype. Methods Among participants of the community-based Nambour Skin Cancer Study, we genotyped 190 people with SKs and 190 without for ApaI, TaqI and FokI polymorphisms. Results We found a significant difference in genotype frequencies of the TaqI polymorphism between affected and unaffected populations (P = 0Æ008). The TT ⁄tt genotype group was associated with a twofold increase in odds of being affected by one or more SK. Individuals with fair skin and the TT ⁄tt genotype had about a sevenfold increase, whereas fair-skinned people with the Tt genotype had a fourfold increase in odds of being affected by SK. Individuals with the TT ⁄tt genotype who were prone to burn and not tan on acute sun exposure had about a sixfold increase in odds of SK. Fair-skinned people with VDR-Apa AA ⁄aa genotypes had about an eightfold increase in odds of being affected by SK compared with a fivefold increase in individuals with the Aa genotype and fair skin. Conclusions The trend for homozygote genotypes to increase the odds of SK suggests that intermediate VDR activity is important in protection or that the heterodimer formed by a heterozygous genotype may have an altered binding potential. Overall, these analyses indicate that VDR may be important in SK development.
Resumo:
In Chronic Kidney Disease (CKD), management of diet is important in prevention of disease progression and symptom management, however evidence on nutrition prescription is limited. Recent international CKD guidelines and literature was reviewed to address the following question “What is the appropriate nutrition prescription to achieve positive outcomes in adult patients with chronic kidney disease?” Databases included in the search were Medline and CINAHL using EBSCOhost search engine, Embase and the Cochrane Database of Systematic Reviews published from 2000 to 2009. International guidelines pertaining to nutrition prescription in CKD were also reviewed from 2000 to 2013. Three hundred and eleven papers and eight guidelines were reviewed by three reviewers. Evidence was graded as per the National Health and Medical Research Council of Australia criteria. The evidence from thirty six papers was tabulated under the following headings: protein, weight loss, enteral support, vitamin D, sodium, fat, fibre, oral nutrition supplements, nutrition counselling, including protein and phosphate, nutrients in peritoneal dialysis solution and intradialytic parenteral nutrition, and was compared to international guidelines. While more evidence based studies are warranted, the customary nutrition prescription remains satisfactory with the exception of Vitamin D and phosphate. In these two areas, additional research is urgently needed given the potential of adverse outcomes for the CKD patient.
Nutritional influences over the life course on lean body mass of individuals in developing countries
Resumo:
The double burden of childhood undernutrition and adult-onset adiposity in transitioning societies poses a significant public health challenge. The development of suboptimal lean body mass (LBM) could partly explain the link between these two forms of malnutrition. This review examines the evidence on both the role of nutrition in “developmental programming” of LBM and the nutritional influences that affect LBM throughout the life course. Studies from developing countries assessing the relationship of early nutrition with later LBM provide important insights. Overall, the evidence is consistent in suggesting a positive association of early nutritional status (indicated by birth weight and growth during first 2 years) with LBM in later life. Evidence on the impact of maternal nutritional supplementation during pregnancy on later LBM is inconsistent. In addition, the role of nutrients (protein, zinc, calcium, vitamin D) that can affect LBM throughout the life course is described. Promoting optimal intakes of these important nutrients throughout the life course is important for reducing childhood undernutrition as well as for improving the LBM of adults.
Resumo:
It is the position of Sports Dietitians Australia (SDA) that adolescent athletes have unique nutritional requirements as a consequence of undertaking daily training and competition in addition to the demands of growth and development. As such, SDA established an expert multidisciplinary panel to undertake an independent review of the relevant scientific evidence and consulted with its professional members to develop sports nutrition recommendations for active and competitive adolescent athletes. The position of SDA is that dietary education and recommendations for these adolescent athletes should reinforce eating for long term health. More specifically, the adolescent athlete should be encouraged to moderate eating patterns to reflect daily exercise demands and provide a regular spread of high quality carbohydrate and protein sources over the day, especially in the period immediately after training. SDA recommends that consideration also be given to the dietary calcium, Vitamin D and iron intake of adolescent athletes due to the elevated risk of deficiency of these nutrients. In order to maintain optimal hydration, adolescent athletes should have access to fluids that are clean, cool and supplied in sufficient quantities before, during and after participation in sport. Finally, it is the position of SDA that use of nutrient needs should be met by core foods rather than supplements, as the recommendation of dietary supplements to developing athletes over-emphasises their ability to manipulate performance in comparison to other training and dietary strategies.
Resumo:
Background Extracorporeal membrane oxygenation (ECMO) circuits have been shown to sequester circulating blood compounds such as drugs based on their physicochemical properties. This study aimed to describe the disposition of macro- and micronutrients in simulated ECMO circuits. Methods Following baseline sampling, known quantities of macro- and micronutrients were injected post oxygenator into ex vivo ECMO circuits primed with the fresh human whole blood and maintained under standard physiologic conditions. Serial blood samples were then obtained at 1, 30 and 60 min and at 6, 12 and 24 h after the addition of nutrients, to measure the concentrations of study compounds using validated assays. Results Twenty-one samples were tested for thirty-one nutrient compounds. There were significant reductions (p < 0.05) in circuit concentrations of some amino acids [alanine (10%), arginine (95%), cysteine (14%), glutamine (25%) and isoleucine (7%)], vitamins [A (42%) and E (6%)] and glucose (42%) over 24 h. Significant increases in circuit concentrations (p < 0.05) were observed over time for many amino acids, zinc and vitamin C. There were no significant reductions in total proteins, triglycerides, total cholesterol, selenium, copper, manganese and vitamin D concentrations within the ECMO circuit over a 24-h period. No clear correlation could be established between physicochemical properties and circuit behaviour of tested nutrients. Conclusions Significant alterations in macro- and micronutrient concentrations were observed in this single-dose ex vivo circuit study. Most significantly, there is potential for circuit loss of essential amino acid isoleucine and lipid soluble vitamins (A and E) in the ECMO circuit, and the mechanisms for this need further exploration. While the reductions in glucose concentrations and an increase in other macro- and micronutrient concentrations probably reflect cellular metabolism and breakdown, the decrement in arginine and glutamine concentrations may be attributed to their enzymatic conversion to ornithine and glutamate, respectively. While the results are generally reassuring from a macronutrient perspective, prospective studies in clinical subjects are indicated to further evaluate the influence of ECMO circuit on micronutrient concentrations and clinical outcomes.
Resumo:
The incidence of autism spectrum disorders, a heterogenous group of neurodevelopmental disorders is increasing. In response, there has been a concerted effort by researchers to identify environmental risk factors that explain the epidemiological changes seen with autism. Advanced parental age, maternal migrant status, maternal gestational stress, pregnancy and birth complications, maternal obesity and gestational diabetes, maternal vitamin D deficiency, use of antidepressants during gestation and exposure to organochlorine pesticides during pregnancy are all associated with an increased risk of autism. Folic acid use prior to pregnancy may reduce the risk of autism. Exposure to antenatal ultrasonography, maternal gestational cigarette and alcohol use do not appear to influence the risk of autism in offspring. There is little evidence that exposure to environmental toxins such as thimerosal, polybrominated diphenyl ethers and di-(2-ethylhexyl) phthalate in early childhood increases the risk of autism. Apart from birth complications, the current evidence suggests that the majority of environmental factors increasing the risk of autism occur in the antenatal period. Consistent with the rise in incidence in autism, some of these environmental factors are now more common in developed nations. Further research is required to determine how these environmental exposures translate to an increased risk of autism. Understanding how these exposures alter neurodevelopment in autistic children may inform both the aetiopathogenesis and the strategies for prevention of autism.
Resumo:
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. © 2013 Mechelli et al.
Resumo:
The past five years have seen many scientific and biological discoveries made through the experimental design of genome-wide association studies (GWASs). These studies were aimed at detecting variants at genomic loci that are associated with complex traits in the population and, in particular, at detecting associations between common single-nucleotide polymorphisms (SNPs) and common diseases such as heart disease, diabetes, auto-immune diseases, and psychiatric disorders. We start by giving a number of quotes from scientists and journalists about perceived problems with GWASs. We will then briefly give the history of GWASs and focus on the discoveries made through this experimental design, what those discoveries tell us and do not tell us about the genetics and biology of complex traits, and what immediate utility has come out of these studies. Rather than giving an exhaustive review of all reported findings for all diseases and other complex traits, we focus on the results for auto-immune diseases and metabolic diseases. We return to the perceived failure or disappointment about GWASs in the concluding section. © 2012 The American Society of Human Genetics.
Resumo:
It has been 10 years since the seminal paper by Morrison and colleagues reporting the association of alleles of the vitamin D receptor and bone density [1], a paper which arguably kick-started the study of osteoporosis genetics. Since that report there have been literally thousands of osteoporosis genetic studies published, and large numbers of genes have been reported to be associated with the condition [2]. Although some of these reported associations are undoubtedly true, this snow-storm of papers and abstracts has clouded the field to such a great extent that it is very difficult to be certain of the veracity of most genetic associations reported hereto. The field needs to take stock and reconsider the best way forward, taking into account the biology of skeletal development and technological and statistical advances in human genetics, before more effort and money is wasted on continuing a process in which the primary achievement could be said to be a massive paper mountain. I propose in this review that the primary reasons for the paucity of success in osteoporosis genetics has been: •the absence of a major gene effect on bone mineral density (BMD), the most commonly studied bone phenotype; •failure to consider issues such as genetic heterogeneity, gene–environment interaction, and gene–gene interaction; •small sample sizes and over-optimistic data interpretation; and •incomplete assessment of the genetic variation in candidate genes studied.
Resumo:
Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.