932 resultados para Vegetation succession
Resumo:
A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.
Resumo:
Owing to proximity of the North Atlantic Stream and the shelf, the And circle divide ya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss-on-ignition, tephra and C-14 data from three sites at the northern part of the island of And circle divide ya were studied. The period 12 300-11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950-11 050 cal. yr BP by a moisture-demanding predominantly low-arctic Oxyria vegetation. During the period 11 050-10 650 cal. yr BP, there was a climatic amelioration towards a sub-arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420-10 250 cal. yr BP, indicating a time-lag for the formation of Betula ecotypes adapted to the oceanic climate of And circle divide ya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500-10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low-arctic heath vegetation along the outer coast.
Resumo:
The efficacy of ‘sod removal’ as a fenland restoration technique was tested using an experimental approach at Montiaghs Moss Nature Reserve, Northern Ireland, from 2006 to 2008. The site suffered from rank growth of purple moor-grass Molinia caerulea which was out-competing herbaceous species. Soil was removed up to a depth of 15 cm completely denuding vegetation in the experimental plot exposing bare peat. By July 2007, 15.2% of sod-removal areas were revegetated; by October 2008 cover had risen to 64.6%. Of this cover, purple moor-grass accounted for only 9-11% compared to 78- 79% on control plots. Cover of other rank-forming grass species was also significantly reduced. Sod removal significantly increased the cover of species characteristic of fenlands including sedges Carex spp., rushes Juncus spp., marsh pennywort Hydrocotyle vulgaris and lesser spearwort Ranunculus flammula. It seems likely that sod removal, which lowered the surface of the peat, restored minerotrophic conditions and exposed the historical seed bank stimulating regeneration of some fenland specialists and pioneer species; this resulted in significantly higher species richness on sod removal plots than control plots two years after treatment. There was no demonstrable effect of sod removal on abundance of devil’s-bit scabious Succisa pratensis, the larval food plant of the Annex II listed marsh fritillary butterfly Euphydryas aurinia. We recommend that consideration should be given to artificially seeding devil’s-bit scabious soon after sod removal treatment to promote early recolonisation and to increase plant abundance on the site.
Resumo:
This study aimed to investigate intra- and inter-site differences in the epibiota on the European oyster Ostrea edulis of different ages and on hard substrata to assess their contribution to biodiversity. This research has shown that shells of O. edulis do show higher species diversity than non-living hard substrata and as oysters grow larger epibiotic diversity will increase. This investigation has revealed that O. edulis possesses biogenic engineering qualities and the value of O. edulis as a vehicle for increasing biodiversity should not be underestimated. Relatively few studies have examined the shell surfaces of Ostrea edulis, which, together with their associated epifauna provide a large portion of the natural hard substrata for sessile filter-feeding organisms, including oysters, in coastal and estuarine ecosystems. It can be considered a keystone species which has an influence on intertidal and subtidal community structures.
Resumo:
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka.Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.
Resumo:
A 40mcore from Loagan Bunut,Malaysian Borneo, yielded a high-resolution early Holocene (11.3e6.75 ka) sequence of marginal-marine deposits. Palynological analysis showed relatively stable fire-regulated lowland forest through this time, with the local development and regression of mangrove vegetation. A general trend of rising rainfall and thus strengthening North East monsoonal circulation linked to the migration of the mean position of the ICTZ was interrupted by what may be episodes of drier climate and weakening monsoonal activity at 9250-8890, 7900 and 7600-7545 cal. BP. Magnetic susceptibility peaks suggestmarked short-term ENSO-style activity superimposed upon this record. Repeated markers for openand disturbed habitats, plus occasional imported and probably-cultivated taxa, point towards human impact from the earliest Holocene on the wet tropical forest at Loagan Bunut.
Resumo:
There has been considerable uncertainty about the nature of Pleistocene environments colonised by the first modern humans in Island SE Asia, and about the vegetation of the Last Glacial Maximum (LGM) in the region. Here, the palynology from a series of exposures in the Great Cave of Niah, Sarawak, Malaysian Borneo, spanning a period from ca. 52,000 to 5000 BP is described. Vegetation during this period was climate-driven and often highly unstable. Interstadials are marked by lowland forest, sometimes rather dry and at times by mangroves. Stadials are indicated by taxa characteristic of open environments or, as at the LGM, by highly disturbed rather open forest. Stadials are also characterised by taxa now restricted to 1000-1600 m above sea level, suggesting temperature declines of ca 7-9 C relative to present, by comparison with modern lapse rates. The practice of biomass burning appears associated with the earliest human activity in the cave.
Resumo:
The impact of burning and grazing on plant, ground beetle and spider species was investigated experimentally in stands of varying ages (burnt in 1982 and 1988 and unburnt plots) on an area of heather moorland in County Antrim, north-east Ireland. Burning initiated complex succession pathways which appear to have characteristic plant and invertebrate species associations. Removal of Calluna dominance initiated a period of high plant species diversity. Investigation of initial post-fire regeneration suggested that the frequency of occurrence of plant species changed over time and was affected by grazing. Grouping of species by the position of their renewal bud, i.e. their life-form, did not account for all observed interspecific variation. The dominant species after burning were Eriophorum vaginatum, E. angustifolium and Vaccinium myrtillus. Studies of vegetation canopy structure showed that, even with the exclusion of the main grazing herbivores, Calluna will not re-establish itself as the dominant species until several years after burning. The ground beetle Nebria salina was trapped more often on plots burnt in 1988 than on unburnt plots or those burnt in 1982. In comparison, Pterostichus niger and Carabus granulatus were trapped in greater numbers on plots burnt in 1982 than on unburnt plots and plots burnt in 1988. The large species Carabus problematicus and Carabus glabratus were trapped in greater numbers on unburnt plots. Similarly, more of the spiders Ceratinella brevipes and Centromerita concinna were trapped on the plots burnt in 1982. In comparison, Lepthyphantes zimmermanni and Robertus lividus were trapped more often on unburnt plots than on plots burnt in 1982 and 1988. Results are discussed with respect to the importance of the continuation of traditional heathland management practices.
THE IMPACT OF GRAZING ON COMMUNITIES OF GROUND-DWELLING SPIDERS (ARANEAE) IN UPLAND VEGETATION TYPES
Resumo:
Adult spider communities were sampled by pitfall trapping over a 24-month period in plots subjected to a range of grazing regimes on five vegetation types on a hill farm in County Antrim, north-east Ireland. Spider community composition was influenced by vegetation type and grazing regime. Variation in the number of individuals and species diversity was also apparent between vegetation types and grazing regime. Plots grazed by all herbivores were characterised by the predominance of species characteristic of disturbed land. Inbye land and areas where grazing had ceased had characteristic coloniser species. The spiders Erigone dentipalpis, Allomengea scopigera and Centromerita bicolor were trapped with greater success in vegetation types where grass species dominated.