503 resultados para Unfolding
Resumo:
La ricerca indaga tensioni e trasformazioni che investono le principali correnti di pensiero politico in Francia nei primi anni della monarchia di Luglio, e vi osserva l’emergere del concetto di classe. Assumendo la dimensione dell’avvenimento come punto di intersezione fra storia e teoria, l’elaborato si concentra sul periodo novembre 1831-giugno 1832 per analizzare il modo in cui, nell’ordine del discorso politico repubblicano, liberale e socialista, le vicende di questi mesi vengono interpretate cercando di dar nome alle figure sociali che esse fanno irrompere nel dibattito pubblico. Il titolo Fra il nome e la storia fa dunque riferimento allo sforzo di indagare il campo di tensione che si apre fra concreto divenire storico e grandi operazioni di nominazione che segnano l’affiorare di strutture concettuali della lunga durata. L’emergere della nozione di classe operaia e delle categorie che intorno a essa si organizzano viene interpretata come una «formazione discorsiva» che pone in questione significato e confini del politico. La frattura del 1848 è assunta come orizzonte e margine esterno della ricerca nella misura in cui si ipotizza che essa segni una prima affermazione del regime di verità di tale formazione discorsiva: lo statuto politico del lavoro. L’elaborato consta di quattro capitoli. I primi tre indagano la riflessione sul politico e la funzione che in essa svolge il concetto di classe a partire dall’interpretazione di alcuni avvenimenti del tornante 1831-32 proposta nel discorso repubblicano del quotidiano «Le National» e della Société des Amis du Peuple, in quello del liberalismo dottrinario di François Guizot e in quello socialista nascente, prima del movimento sansimoniano, e poi muovendo fino al 1848 francese con l’analisi propostane da Karl Marx. Il quarto capitolo indaga infine la dimensione del «sociale», la sua elaborazione e articolazione attraverso il lavoro di studio e oggettivazione delle figure del mondo del lavoro.
Resumo:
Synthetic Routes toward Functional Block Copolymers and Bioconjugates via RAFT PolymerizationrnSynthesewege für funktionelle Blockcopolymere und Biohybride über RAFT PolymerisationrnDissertation von Dipl.-Chem. Kerstin T. WissrnIm Rahmen dieser Arbeit wurden effiziente Methoden für die Funktionalisierung beider Polymerkettenenden für Polymer- und Bioanbindung von Polymeren entwickelt, die mittels „Reversible Addition-Fragmentation Chain Transfer“ (RAFT) Polymerisation hergestellt wurden. Zu diesem Zweck wurde ein Dithioester-basiertes Kettentransferagens (CTA) mit einer Aktivestereinheit in der R-Gruppe (Pentafluorphenyl-4-phenylthiocarbonylthio-4-cyanovaleriansäureester, kurz PFP-CTA) synthetisiert und seine Anwendung als universelles Werkzeug für die Funktionalisierung der -Endgruppe demonstriert. Zum Einen wurde gezeigt, wie dieser PFP-CTA als Vorläufer für die Synthese anderer funktioneller CTAs durch einfache Aminolyse des Aktivesters genutzt werden kann und somit den synthetischen Aufwand, der üblicherweise mit der Entwicklung neuer CTAs verbunden ist, reduzieren kann. Zum Anderen konnte der PFP-CTA für die Synthese verschiedener Poly(methacrylate) mit enger Molekulargewichtsverteilung und wohl definierter reaktiver -Endgruppe verwendet werden. Dieses Kettenende konnte dann erfolgreich mit verschiedenen primären Aminen wie Propargylamin, 1-Azido-3-aminopropan und Ethylendiamin oder direkt mit den Amin-Endgruppen verschiedener Peptide umgesetzt werden.rnAus der Reaktion des PFP-CTAs mit Propargylamin wurde ein Alkin-CTA erhalten, der sich als effizientes Werkzeug für die RAFT Polymerisation verschiedener Methacrylate erwiesen hat. Der Einbau der Alkin-Funktion am -Kettenende wurde mittels 1H und 13C NMR Spektroskopie sowie MALDI TOF Massenspektroskopie bestätigt. Als Modelreaktion wurde die Kopplung eines solchen alkin-terminierten Poly(di(ethylenglykol)methylethermethacrylates) (PDEGMEMA) mit azid-terminiertem Poly(tert-butylmethacrylat), das mittels Umsetzung einer Aktivester-Endgruppe erhalten wurde, als kupferkatalysierte Azid-Alkin-Cycloaddition (CuAAC) durchgeführt. Die Aufarbeitung des resultierenden Diblockcopolymers durch Fällen ermöglichte die vollständige Abtrennung des Polymerblocks 1, der im Überschuss eingesetzt wurde. Darüber hinaus blieb nur ein sehr kleiner Anteil (< 2 Gew.-%) nicht umgesetzten Polymerblocks 2, was eine erfolgreiche Polymeranbindung und die Effizienz der Endgruppen-Funktionalisierung ausgehend von der Aktivester--Endgruppe belegt.rnDie direkte Reaktion von stimuli-responsiven Polymeren mit Pentafluorphenyl(PFP)ester-Endgruppen, namentlich PDEGMEMA und Poly(oligo(ethylenglykol)methylethermethacrylat), mit kollagen-ähnlichen Peptiden ergab wohl definierte Polymer-Peptid-Diblockcopolymere und Polymer-Peptid-Polymer-Triblockcopolymer unter nahezu quantitativer Umsetzung der Endgruppen. Alle Produkte konnten vollständig von nicht umgesetztem Überschuss des Homopolymers befreit werden. In Analogie zu natürlichem Kollagen und dem nicht funktionalisierten kollagen-ähnlichen Peptid bilden die PDEGMEMA-basierten, entschützten Hybridcopolymere Trimere mit kollagen-ähnlichen Triple-Helices in kalter wässriger Lösung, was mittels Zirkular-Dichroismus-Spektroskopie (CD) nachgewiesen werden konnte. Temperaturabhängige CD-Spektroskopie, Trübungsmessungen und dynamische Lichtstreuung deuteten darauf hin, dass sie bei höheren Temperaturen doppelt stimuli-responsive Überstrukturen bilden, die mindestens zwei konformative Übergänge beim Aufheizen durchlaufen. Einer dieser Übergänge wird durch den hydrophoben Kollaps des Polymerblocks induziert, der andere durch Entfalten der kollagen-ähnlichen Triple-Helices.rnAls Ausweitung dieser synthetischen Strategie wurde homotelecheles PDEGMEMA mit zwei PFP-Esterendgruppen dargestellt, wozu der PFP-CTA für die Funktionalisierung der -Endgruppe und die radikalische Substitution des Dithioesters durch Behandlung mit einem Überschuss eines funktionellen AIBN-Derivates für die Funktionalisierung der -Endgruppe ausgenutzt wurde. Die Umsetzung der beiden reaktiven Kettenenden mit dem N-Terminus eines Peptidblocks ergab ein Peptid-Polymer-Peptid Triblockcopolymer.rnSchließlich konnten die anorganisch-organischen Hybridmaterialien PMSSQ-Poly(2,2-diethoxyethylacrylat) (PMSSQ-PDEEA) und PMSSQ-Poly(1,3-dioxolan-2-ylmethylacrylat) (PMSSQ-PDMA) für die Herstellung robuster, peptid-reaktiver Oberflächen durch Spin Coaten und thermisch induziertes Vernetzen angewendet werden. Nach saurem Entschützen der Acetalgruppen in diesen Filmen konnten die resultierenden Aldehydgruppen durch einfaches Eintauchen in eine Lösung mit einer Auswahl von Aminen und Hydroxylaminen umgesetzt werden, wodurch die Oberflächenhydrophilie modifiziert werden konnte. Darüber hinaus konnten auf Basis der unterschiedlichen Stabilität der zwei hier verglichenen Acetalgruppen Entschützungsprotokolle für die exklusive Entschützung der Diethylacetale in PMSSQ-PDEEA und deren Umsetzung ohne Entschützung der zyklischen Ethylenacetale in PMSSQ-PDMA entwickelt werden, die die Herstellung multifunktioneller Oberflächenbeschichtungen z.B. für die Proteinimmobilisierung ermöglichen.
Resumo:
Le malattie neurodegenerative sono caratterizzate da aggregazione proteica, dipendente dalla perdita della usuale struttura fisiologica funzionale delle proteine coinvolte, a favore di conformazioni tossiche (patologiche). Il modello corrente descrive questi cambiamenti conformazionali come eventi rari e ritiene che non esista una sola conformazione patogena, ma che tali possibili conformazioni siano piuttosto eterogenee. La caratterizzazione di queste strutture è, di conseguenza, difficile con le tradizionali tecniche in bulk che permettono di studiare solo la conformazione media e non rendono possibile il riconoscimento delle caratteristiche dei conformeri individuali. Lo sviluppo delle tecniche di singola molecola ha permesso di studiare in modo approfondito le conformazioni possibili. In questo lavoro la spettroscopia di forza di singola molecola basata sull'AFM viene applicata a PrP (proteina responsabile delle encefalopatie spongiformi trasmissibili). Si studiano gli equilibri conformazionali del monomero e quelli di costrutti oligomerici, allo scopo di caratterizzare gli step iniziali dei processi aggregativi. Nel corso di questo lavoro di tesi è stato, in particolare, sviluppato un sistema di analisi dati, al fine di studiare in modo quantitativo le distribuzioni di eventi ottenute. Grazie a tale strumento è stato possibile riconoscere i segnali di unfolding della conformazione nativa del monomero e notare come essa sia presente anche in costrutti oligomerici, ad indicare come questo ripiegamento sia stabile anche in presenza di più monomeri ravvicinati. Si è osservato l'effetto del pH sulla stabilità di tale struttura, notando come pH acidi destabilizzino il ripiegamento nativo. Inoltre si è studiato il ruolo dell'orientazione dei monomeri nella formazione di strutture dimeriche. Monomeri e oligomeri di PrP sono stati descritti come proteine parzialmente strutturate il cui panorama energetico contiene molti minimi locali, dando origine a parecchie conformazioni transienti.
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.
Resumo:
The TM0727 gene of Thermotoga maritima is responsible for encoding what has been reported to be a modulator of DNA gyrase (pmbA). Although the function of pmbA is still unknown, it is believedto be involved in cell division, carbon storage regulation, and the synthesis of the antibiotic peptide microcin B17. It is suggested that it serves together with tldD, a known zinc dependent protease, tomodulate DNA gyrase. TM0727 is believed to be a zinc dependent protease that binds zinc in the central active site of the molecule, located between two equivalent monomeric units. However, thecrystal structure determined by Wilson et al. (2005) did not contain zinc. It therefore remains to be seen if TM0727 requires zinc for activity, or regulation, and if the protein is indeed a protease. To begin studying this protein, the gene was expressed in BL21(DE3) pLysS cells and the induction time was optimized. Using affinity and ion exchange chromatography, the protein has been successfully purified. The purification procedure can be replicated to obtain sufficient protein for characterization. Purification results show that the protein loses stability after 24 hours and remains stable under an imidazole-free lysis workup. Preliminary characterization of TM0727 has focused on understanding the protein’s structuralproperties through tryptophan fluorescence anisotropy measurements. The four tryptophan residues located within the TM0727 dimer fluoresce at different maximum wavelengths and with differentintensities upon excitation with 295nm light. These emission properties are highly sensitive to the environment (solvent, surrounding residues) of each tryptophan residue. The low number oftryptophans allows for a specific monitoring of the protein’s structure as it denatures. As more denaturant is added to the protein, its tryptophan environments have clearly altered. This is indicative of unfolding and increased solvent exposure of the protein. This unfolding has been confirmed with the addition of a fluorescent quencher. Additionally, fluorescence anisotropy measurements have been carried out on the protein to gain a preliminary understanding of the rotational dynamics of the tryptophan residues. These experiments excite the tryptophan residues within the sample using a polarized light source. Polarized emission is then detected, the degree of which depends on the rotational dynamics and local environment of the tryptophan residues. The protein was denatured and the changes in emission were recorded to detect these structural changes. Results have shown a large change in quaternary structure, consistent with a dimer to monomer transition, occurs at 1.5M Guandidine HCl. There has also been an examination of the crystal structure for the location of a potential active site. The inner cavity of the protein was inspected visually to locate a potential location for a catalytic triad, specifically the amino acids found in the active sites of serine, cyteine, and aspartateproteases. It was found that a potential aspartic protease active site may be located between the Asparate286 and Aspartate287 residues. Further investigation is warranted to test this remotepossibility.
Resumo:
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter
Resumo:
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Resumo:
Evidence suggests that superior motor performance coincides with a longer duration of the last fixation before movement initiation, an observation called “quiet eye” (QE). Although the empirical findings over the last two decades underline the robustness of the phenomenon, little is known about its functional role in motor performance. Therefore, a novel paradigm is introduced, testing QE duration as an independent variable by experimentally manipulating the onset of the last fixation before movement unfolding. Furthermore, this paradigm is employed to investigate the functional mechanisms behind the QE phenomenon by manipulating the predictability of the target position and thereby the amount of information to be processed over the QE period. The results further support the assumption that QE affects motor performance, with experimentally prolonged QE durations increasing accuracy in a throwing task. However, it is only under a high information-processing load that a longer QE duration is beneficial for throwing performance. Therefore, the optimization of information processing, particularly in motor execution, turns out to be a promising candidate for explaining QE benefits on a functional level.
Resumo:
The early phase of psychotherapy has been regarded as a sensitive period in the unfolding of psychotherapy leading to positive outcomes. However, there is disagreement about the degree to which early (especially relationship-related) session experiences predict outcome over and above initial levels of distress and early response to treatment. The goal of the present study was to simultaneously examine outcome at post treatment as a function of (a) intake symptom and interpersonal distress as well as early change in well-being and symptoms, (b) the patient's early session-experiences, (c) the therapist's early session-experiences/interventions, and (d) their interactions. The data of 430 psychotherapy completers treated by 151 therapists were analyzed using hierarchical linear models. Results indicate that early positive intra- and interpersonal session experiences as reported by patients and therapists after the sessions explained 58% of variance of a composite outcome measure, taking intake distress and early response into account. All predictors (other than problem-activating therapists' interventions) contributed to later treatment outcomes if entered as single predictors. However, the multi-predictor analyses indicated that interpersonal distress at intake as well as the early interpersonal session experiences by patients and therapists remained robust predictors of outcome. The findings underscore that early in therapy therapists (and their supervisors) need to understand and monitor multiple interconnected components simultaneously
Resumo:
Partially functional forms of iso-1-cytochrome c from Saccharomyces cerevisiae were obtained by replacements of the evolutionarily conserved proline 71 with valine, isoleucine and threonine (Ernst et.al.,1985). Pro-71 lies at the juncture of two short helical regions and is believed to be important for proper local polypeptide chain folding within the iso-1-cytochrome c structure.^ To study folding in the absence of intermolecular disulfide dimer formation the free sulfhydryl group of Cys-102 was modified in both wild type and mutant proteins with an alkylating reagent, methyl methanethiosulfonate. Spectral analysis of the wild type and mutant proteins shows that the native-like functional (or partially functional) folded structure of cytochrome c is retained in the chemically modified derivatives. The replacement of Pro-71 with valine, isoleucine or threonine reduces the intensity of the 696 nm absorbance band which is an indicator of the Met-80 ligation to the heme. Thermal stability and guanidine hydrochloride unfolding studies of the mutant proteins shows a destabilization of the protein as a result of mutation. The degree of destabilization depends on the chemical nature of the substituent amino acid in the mutant protiens.^ Kinetics of folding/unfolding reactions of the proteins were monitored by fluorescence changes using stopped flow mixing to obtain guanidine hydrochloride concentration jumps ending below, within, and above the transition zone. The replacement of Pro-71 alters the rate on one of the fastest phases, $\tau\sb3$, while the two other phases, $\tau\sb1$ & $\tau\sb2$, remain the same.^ Slow refolding kinetic studies indicate that replacement of Pro-71 does not completely eliminate the absorbance or fluorescence detected slow phases leading to the conclusion that Pro-71 is not involved in the generation of the slow phases in the folding kinetics of iso-1-cytochrome c.^ The alkaline conformational change involving the disappearance of the 696 nm absorbance band occurs with increasing pH in the alkaline pH region (Davis et al., 1974). The apparent pK of this conformational change in mutant proteins is shifted as much as two pH units compared to wild type. The equilibrium and kinetic data of alkaline transition for the wild type follows a simple mechanism proposed by Davis et al., (1974) for horse heart cytochrome c. A more complex mechanism is proposed for the behavior of the mutant proteins. ^
Resumo:
This paper presents a measurement of the top quark pair () production charge asymmetry A (C) using 4.7 fb(-1) of proton-proton collisions at a centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. A -enriched sample of events with a single lepton (electron or muon), missing transverse momentum and at least four high transverse momentum jets, of which at least one is tagged as coming from a b-quark, is selected. A likelihood fit is used to reconstruct the event kinematics. A Bayesian unfolding procedure is employed to estimate A (C) at the parton-level. The measured value of the production charge asymmetry is A (C) = 0.006 +/- 0.010, where the uncertainty includes both the statistical and the systematic components. Differential A (C) measurements as a function of the invariant mass, the rapidity and the transverse momentum of the system are also presented. In addition, A (C) is measured for a subset of events with large velocity, where physics beyond the Standard Model could contribute. All measurements are consistent with the Standard Model predictions.
Resumo:
The presentation will start by unfolding the various layers of chariot imagery in early Indian sources, namely, chariots as vehicles of gods such as the sun (sūrya), i.e. as symbol of cosmic stability; chariots as symbols of royal power and social prestige e.g. of Brahmins; and, finally, chariots as metaphors for the “person”, the “mind” and the “way to liberation” (e.g., Kaṭ.-Up. III.3; Maitr.-Up. II. 6). In Buddhist and non-Buddhist sources, chariots are in certain aspects used as a metaphor for the (old) human body (e.g., Caraka-S., Vi.3.37-38; D II.100; D II.107); apart from that, there is, of course, mention of the “real” use of chariots in sports, cults, journey, and combat. The most prominent example of the Buddhist use of chariot imagery is its application as a model for the person (S I.134 f.; Milindapañha, ed. Trenckner, 26), i.e., for highlighting the “non-substantial self”. There are, however, other significant examples of the usage of chariot imagery in early Buddhist texts. Of special interest are those cases in which chariot metaphors were applied in order to explain how the ‘self’ may proceed on the way to salvation – with ‘mindfulness’ or the ‘self’ as charioteer, with ‘wisdom’ and ‘confidence’ as horses etc. (e.g. S I. 33; S V.7; Dhp 94; or the Nārada-Jātaka, No. 545, verses 181-190). One might be tempted to say that these instances reaffirm the traditional soteriology of a substantial “progressing soul”. Taking conceptual metaphor analysis as a tool, I will, in contrast, argue that there is a special Buddhist use of this metaphor. Indeed, at first sight, it seems to presuppose a non-Buddhist understanding (the “self” as charioteer; the chariot as vehicle to liberation, etc.). Yet, it will be argued that in these cases the chariot imagery is no longer fully “functional”. The Buddhist usage may, therefore, best be described as a final allegorical phase of the chariot-imagery, which results in a thorough deconstruction of the “chariot” itself.
Resumo:
We integrated research on the dimensionality of career success into social-cognitive career theory and explored the positive feedback loop between occupational self-efficacy and objective and subjective career success over time (self-efficacy → objective success → subjective success → self-efficacy). Furthermore, we theoretically accounted for synchronous and time-lagged effects, as well as indirect reciprocity between the variables. We tested the proposed model by means of longitudinal structural equation modeling in a 9-year four-wave panel design, by applying a model comparison approach and indirect effect analyses (N = 608 professionals). The findings supported the proposed positive feedback loop between occupational self-efficacy and career success. Supporting our time-based reasoning, the findings showed that unfolding effects between occupational self-efficacy and objective career success take more time (i.e., time-lagged or over time) than unfolding effects between objective and subjective career success, as well as between subjective career success and occupational self-efficacy (i.e., synchronous or concurrently). Indirect effects of past on future occupational self-efficacy via objective and subjective career success were significant, providing support for an indirect reciprocity model. Results are discussed with respect to extensions of social-cognitive career theory and occupational self-efficacy development over time.
Resumo:
Many technological developments of the past two decades come with the promise of greater IT flexi-bility, i.e. greater capacity to adapt IT. These technologies are increasingly used to improve organiza-tional routines that are not affected by large, hard-to-change IT such as ERP. Yet, most findings on the interaction of routines and IT stem from contexts where IT is hard to change. Our research ex-plores how routines and IT co-evolve when IT is flexible. We review the literatures on routines to sug-gest that IT may act as a boundary object that mediates the learning process unfolding between the ostensive and the performative aspect of the routine. Although prior work has concluded from such conceptualizations that IT stabilizes routines, we qualify that flexible IT can also stimulate change because it enables learning in short feedback cycles. We suggest that, however, such change might not always materialize because it is contingent on governance choices and technical knowledge. We de-scribe the case-study method to explore how routines and flexible IT co-evolve and how governance and technical knowledge influence this process. We expect to contribute towards stronger theory of routines and to develop recommendations for the effective implementation of flexible IT in loosely coupled routines.
Resumo:
The findings presented in this dissertation detail the complex interaction between BBK32 and fibronectin and describe novel consequences of the interaction. BBK32 is a fibronectin-binding protein on Borrelia burgdorferi, the causative agent of Lyme disease. We found that BBK32 contains multiple fibronectin-binding motifs, recognizing the fibronectin N-terminal domain (NTD) and the gelatin binding domain (GBD) in an anti-parallel order, where corresponding sites in BBK32 and fibronectin are aligned so that there is a one-to-one interaction between the proteins. While characterizing this interaction, we discovered that binding of BBK32 to the GBD inhibits the migration stimulating factor's (MSF) motogenic activity. In the presence of BBK32, endothelial cells do not migrate in response to increasing concentrations of MSF or the GBD. MSF is found under wound healing conditions, and inhibition of its activity may allow the tick-transmitted spirochetes to delay wound healing and to establish an infection. ^ Biophysical structural studies, designed to identify a mechanism of interaction, revealed that BBK32 binding to the NTD leads to the unfolding of plasma fibronectin, which exposes α5β1 integrin recognition motifs. Binding assays demonstrate that the BBK32-NTD interaction enhances the plasma fibronectin-α5β1 integrin interaction, which may allow B. burgdorferi to invade host cells, and thereby evade the host immune system. ^ We also determined that BBK32 binds fibronectin F3 modules, which leads to plasma fibronectin aggregation and induction of superfibronectin. The resulting superfibronectin is conformationally distinct from plasma and cellular fibronectin, and can inhibit endothelial cell proliferation. BBK32's active superfibronectin-forming motif has been located to a region between residues 160 and 175, which contains two sequence motifs that are also found in anastellin, the only other known superfibronectin-inducing protein. ^ A potential consequence of BBK32-induced superfibronectin formation was identified. BBK32-induced superfibronectin formation results in the exposure of α4β1 integrin recognition sequences in fibronectin. The α4β1 integrin is required for leukocyte transendothelial cell migration. BBK32-induced superfibronectin inhibits this activity. The inhibition of leukocyte recruitment to the infection site may slow the activity of the host immune system, and permit the spirochetes to establish an infection. ^