838 resultados para Uncertainty in Wind Energy
Resumo:
This work deals with the nonlinear piezoelectric coupling in vibration-based energy harvesting, done by A. Triplett and D.D. Quinn in J. of Intelligent Material Syst. and Structures (2009). In that paper the first order nonlinear fundamental equation has a three dimensional state variable. Introducing both observable and control variables in such a way the controlled system became a SISO system, we can obtain as a corollary that for a particular choice of the observable variable it is possible to present an explicit functional relation between this variable one, and the variable representing the charge harvested. After-by observing that the structure in the Input-Output decomposition essentially changes depending on the relative degree changes, presenting bifurcation branches in its zero dynamics-we are able in to identify this type of bifurcation indicating its close relation with the Hartman - Grobman theorem telling about decomposition into stable and the unstable manifolds for hyperbolic points.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated phi phi pairs at the Relativistic Heavy Ion Collider (RHIC) energies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objetivou-se, com este trabalho, estudar as características de carcaça e qualidade da carne do peito depois da inclusão de fitase em dietas para frangos de corte, com diferentes níveis de energia metabolizável aparente corrigida para nitrogênio (EMAn) e proteína bruta (PB) reduzida, suplementadas com aminoácidos essenciais seguindo o conceito de proteína ideal. Foram utilizados 1.500 frangos machos Cobb dos 22 aos 42 dias de idade com peso inicial de 833 ± 7 g e final de 2741 ± 48 g distribuídos em delineamento inteiramente casualizado em esquema fatorial 3x3+1 (três níveis de EMAn - 2950, 3100 e 3250 kcal/kg - e três de PB - 14, 16 e 18% - e um tratamento adicional - controle, sem fitase, com 3100 kcal/kg EMAn, 19,2% de PB e 0,4% de fósforo disponível) em seis repetições com 25 aves cada. Ao final do experimento, duas aves de cada parcela foram sacrificadas para a mensuração do rendimento de carcaça e de cortes e determinação da composição química da carne do peito. Os níveis de energia e proteína em rações com fitase influenciaram (P<0,05) os rendimentos de carcaça, peito e gordura abdominal a porcentagem de umidade, proteína e lipídios no músculo pectoralis major das aves, sendo os níveis de 3100 kcal EMAn/kg e 18% de PB os que proporcionaram maiores rendimentos de carcaça e de peito e menor deposição de gordura abdominal, mas em maior teor de lipídios na carne do peito. Conclui-se que a manipulação da energia em rações com reduzido teor de proteína e suplementadas com aminoácidos e fitase influencia o rendimento de cortes e a qualidade da carne do peito de frangos aos 42 dias.
Resumo:
The purpose of this study was to determine the rate of whole-body protein turnover in moderately and severely alcoholic, malnourished, cirrhotic patients fed with different amounts of protein or energy. Six male patients (Child classes B and C) and four age- and sex-matched healthy control subjects were studied for 18 d in fasting and feeding states; a single oral dose of [N-15]glycine was used as a tracer and urinary ammonia was the end product. The kinetic study showed that patients had higher protein catabolism while fasting (patients: 3.14 +/- 1.2 g of lean body mass/9 h; controls: 1.8 +/- 0.3 g of lean body mass/9 h: P<0.02). Although not statistically significant, protein catabolism (grams of lean body mass/9 h) was lower with the hyperproreic/hyperenergetic diet when compared with fasting. Nitrogen retention was consistent with the lower protein-catabolism rate; a statistically significant increase in nitrogen balance was observed when patients were fed with the hyperproteic/hyperenergetic diet compared with fasting 14.3 +/- 3.2 g of nitrogen/d and -2.2 +/- 1.9 g of nitrogen/d, respectively; P < 0.01). These data indicate that Child class B and C cirrhotic patients are hypercatabolic and that Long-term nutritional intervention with a hyperproteic/hyperenergetic diet is likely needed to improve their clinical and nutritional status. Nutrition 2001;17:239-242. (C) Elsevier B.V. 2001.
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.
Resumo:
Inelasticity distributions in high-energy p-nucleus collisions are computed in the framework of the interacting gluon model, with the impact-parameter fluctuation included. A proper account of the peripheral events by this fluctuation has shown to be vital for the overall agreement with several reported data. The energy dependence is found to be weak.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
Incluye Bibliografía
Resumo:
An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.
Resumo:
Includes bibliography
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.