654 resultados para Ubiquitin ligases
Resumo:
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Resumo:
Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.
Resumo:
The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.
Resumo:
A. Costanza, K. Weber, S. Gandy, C. Bouras, P. R. Hof, P. Giannakopoulos and A. Canuto (2011) Neuropathology and Applied Neurobiology37, 570-584 Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum, signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology and pathogenesis of CTE and Alzheimer's disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neurone disease/amyotrophic lateral sclerosis (ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in-depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
Resumo:
Fabry disease is a lysosomal storage disorder (LSD) caused by a deficiency in alpha-galactosidase A. The disease is characterized by severe major organ involvement, but the pathologic mechanisms responsible have not been elucidated. Disruptions of autophagic processes have been reported for other LSDs, but have not yet been investigated in Fabry disease. Renal biopsies were obtained from five adult male Fabry disease patients before and after three years of enzyme replacement therapy (ERT) with agalsidase alfa. Vacuole accumulation was seen in renal biopsies from all patients compared with control biopsies. Decreases in the number of vacuoles were seen after three years of ERT primarily in renal endothelial cells and mesangial cells. Measurement of the levels of LC3, a specific autophagy marker, in cultured cells from Fabry patients revealed increased basal levels compared to cells from non-Fabry subjects and a larger increase in response to starvation than seen in non-Fabry cells. Starvation in the presence of protease inhibitors did not result in a significant increase in LC3 in Fabry cells, whereas a further increase in LC3 was observed in non-Fabry cells, an observation that is consistent with impaired autophagic flux in Fabry disease. Overexpression of LC3 mRNA in Fabry fibroblasts compared to control cells is consistent with an upregulation of autophagy. Furthermore, LC3 and p62/SQSTM1 (that binds to LC3) staining in renal tissues and in cultured fibroblasts from Fabry patients supports impairment of autophagic flux. These findings suggest that Fabry disease is linked to a deregulation of autophagy.
Resumo:
Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD.
Resumo:
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.
Resumo:
The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).
Resumo:
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.
Resumo:
RÉSUMÉ Les protéines d'ancrage de la protéine kinase A (AKAPs) constituent une grande famille de protéines qui ciblent la protéine kinase A (PKA) à proximité de ses substrats physiologiques pour assurer leur régulation. Une nouvelle protéine de cette famille, appelée AKAP-Lbc, a été récemment caractérisée et fonctionne comme un facteur d'échange de nucléotides guanine (GEF) pour la petite GTPase Rho. AKAP-Lbc est régulée par différents signaux qui activent et désactivent son activité Rho-GEF. Son activation est assurée par la sous-unité alpha de la protéine G hétérotrimérique G12, tandis que son inhibition dépend de son interaction avec la PKA et 14-3-3. AKAP-Lbc est principalement exprimée dans le coeur et pourrait réguler des processus importants tels que l'hypertrophie et la différenciation des cardiomyocytes. Ainsi, il est crucial d'élucider les mécanismes moléculaires impliqués dans la régulation de son activité Rho-GEF. Le but général de ce travail de thèse est la caractérisation de deux nouveaux mécanismes impliqués dans la régulation de l'activité de AKAP-Lbc. Le premier mécanisme consiste en la régulation de l'activité de AKAP-Lbc par son homo-oligomérisation. Mes travaux montrent que l'homo-oligomérisation maintient AKAP-Lbc inactive, dans une conformation permettant à la PKA ancrée et à 14-3-3 d'exercer leur effet inhibiteur sur l'activité de AKAP-Lbc. Le second mécanisme concerne la régulation de l'activité de AKAP-Lbc via une nouvelle interaction entre AKAP-Lbc et la protéine LC3. LC3 joue un rôle crucial dans l'autophagie, un processus cellulaire qui adresse les protéines cytoplasmiques au lysosome pour leur dégradation. Ce mécanisme est particulièrement important pour le survie des cardiomyocytes durant les périodes d'absence de nutriments. Mes travaux mettent en évidence que LC3 inhibe l'activité Rho-GEF de AKAP-Lbc, ce qui suggère que, au-delà son rôle bien établi dans l'autophagie, LC3 participerait à la régulation de la signalisation de Rho. Prises ensembles, ces études contribuent à comprendre comment le complexe de signalisation formé par AKAP-Lbc régule la signalisation de Rho dans les cellules. Au-delà de leur intérêt au niveau biochimique, ces travaux pourraient aussi contribuer à élucider les réseaux de signalisation qui régulent des phénomènes physiologiques dans le coeur. ABSTRACT A-kinase anchoring proteins (AKAPs) are a group of functionally related proteins, which target the cAMP dependent protein kinase A (PKA) in close proximity to its physiological substrates for ensuring their regulation. A novel PKA anchoring protein, termed AKAP-Lbc, has been recently characterized, which also functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rho. AKAP-Lbc is regulated in a bi-directional manner by signals which activate or deactivate its Rho-GEF activity. Activation is mediated by the alpha subunit of the heterotrimeric G protein G12, whereas inhibition occurs following its interaction with PKA and 14-3-3. AKAP-Lbc is predominantly expressed in the heart and might regulate important processes such as hypertrophy and differentiation of cardiomyocytes. Therefore ít is crucial to elucidate the molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The general aim of the present thesis work is the characterization of two novel molecular mechanisms involved in the regulation of the Rho-GEF activity of AKAP-Lbc. The first mechanism consists of the. regulation of AKAP-Lbc activity through its homooligomerization. I report here that homo-oligomerization maintains AKAP-Lbc inactive, under a conformation suitable for ensuring the inhibitory effect of anchored PKA and 14-33 on AKAP-Lbc activity. The second mechanism concerns the regulation of AKAP-Lbc activity through a novel interaction between AKAP-Lbc and ubiquitin-like protein LC3. LC3 is a key mediator of autophagy, which is a cellular process that targets cytosolic proteins to the lysosome for degradation. This process is particularly important for cardiomyocyte survival during conditions of nutrient starvation. Here, I show that LC3 is a negative regulator of the Rho-GEF activity of AKAP-Lbc, which suggests that, beyond its well established role in autophagy, LC3 can participate in the regulation of Rho signaling in cells. Overall, these findings contribute to understand how the AKAP-Lbc signaling complex can regulate the Rho signaling in cells. Beyond its interest at the biochemical level, this work might also contribute to elucidate the signaling network that regulate physiological events in the heart.
Resumo:
The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS.
Resumo:
Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.
Resumo:
Résumé pour un large public: La vaccination a eu un impact énorme sur la santé mondiale. Mais, quel est le principe d'un vaccin? Il est basé sur la 'mémoire immunologique', qui est une particularité exclusive des systèmes immunitaires des organismes évolués. Suite à une infection par un pathogène, des cellules spécialisées de notre système immunitaire (les lymphocytes) le reconnaissent et initient une réaction immunitaire qui a pour but son élimination. Pendant cette réaction se développent aussi des cellules, appelées cellules lymphocytaires mémoire, qui persistent pour longue durée et qui ont la capacité de stimuler une réaction immunitaire très efficace immédiatement après une seconde exposition à ce même pathogène. Ce sont ces cellules mémoires (lymphocytes B et T) qui sont à la base de la 'mémoire immunologique' et qui sont stimulées lors de la vaccination. Chez l'homme, deux populations distinctes des lymphocytes T mémoires ont été identifiées: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et essentiels dans l'immunité protectrice. Typiquement, les cellules effectrices mémoires sont capables de tuer immédiatement le pathogène tandis que les cellules centrales mémoires sont responsables d'initier une réponse immunitaire complète. Pourtant, les mécanismes biochimiques qui contrôlent les fonctions de ces cellules ont été jusqu'à présent peu étudiés à cause de la faible fréquence de ces cellules et de la quantité limitée de tissus humains disponibles pour les analyses. La compréhension de ces mécanismes est cruciale pour la réalisation de vaccins efficaces et pour le développement de nouveaux médicaments capables de moduler la réponse immunitaire lymphocytaire. Dans cette thèse, nous avons d'abord développé et amélioré une technologie appelée 'protéine array en phase inverse' qui possède un niveau de sensibilité beaucoup plus élevé par rapport aux technologies classiquement utilisées dans l'étude des protéines. Grâce à cette technique, nous avons pu comparer la composition protéique du système de transmission des signaux d'activation des cellules CM et EM humaines. L'analyse de 8 à 13 sujets sains a montré que ces populations des cellules mémoires possèdent un système de signalisation protéique différent. En effet, les cellules EM possèdent, par rapport aux cellules CM, des niveaux réduits d'une protéine régulatrice (appelée c-Cbl) que nous avons démontré comme étant responsable des fonctions spécifiques de ces cellules. En effet, en augmentant artificiellement l'expression de cette protéine régulatrice dans les cellules EM jusqu'au niveau de celui des cellules CM, nous avons induit dans les cellules EM des capacités fonctionnelles caractéristiques des cellules CM. En conclusion, notre étude a identifié, pour la première fois chez l'homme, un mécanisme biochimique qui contrôle les fonctions des populations des cellules mémoires. Résumé en Français: Les cellules mémoires persistent inertes dans l'organisme et produisent des réactions immunitaires rapides et robustes contre les pathogènes précédemment rencontrés. Deux populations distinctes des cellules mémoires ont été identifiées chez l'homme: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et critiques dans l'immunité protectrice. Les mécanismes biochimiques qui contrôlent leurs fonctions ont été jusqu'à présent peu étudiés, bien que leur compréhension soit cruciale pour le développement des vaccins et des nouveaux traitements/médicaments. Les limites majeures à ces études sont la faible fréquence de ces populations et la quantité limitée de tissus humains disponibles. Dans cette thèse nous avons d'abord développé et amélioré la technologie de 'protéine array en phase inverse' afin d'analyser les molécules de signalisation des cellules mémoires CD4 et CD8 humaines isolées ex vivo. L'excellente sensibilité, la reproductibilité et la linéarité de la détection, ont permis de quantifier des variations d'expression protéiques supérieures à 20% dans un lysat équivalent à 20 cellules. Ensuite, grâce à l'analyse de 8 à 13 sujets sains, nous avons prouvé que les cellules mémoires CD8 ont une composition homogène de leur système de signalisation tandis que les cellules CD4 EM expriment significativement de plus grandes quantités de SLP-76 et des niveaux réduits de c-Cbl, Syk, Fyn et LAT par rapport aux cellules CM. En outre, l'expression réduite du régulateur négatif c-Cbl est corrélée avec l'expression des SLP-76, PI3K et LAT uniquement dans les cellules EM. L'évaluation des propriétés fonctionnelles des cellules mémoires a permis de démontrer que l'expression réduite du c-Cbl dans les cellules EM est associé à une diminution de leur seuil d'activation. En effet, grâce a la technique de transduction cytosolique, nous avons augmenté la quantité de c-Cbl des cellules EM à un niveau comparable à celui des cellules CM et constaté une réduction de la capacité des cellules EM à proliférer et sécréter des cytokines. Ce mécanisme de régulation dépend principalement de l'activité d'ubiquitine ligase de c-Cbl comme démontré par l'impact réduit du mutant enzymatiquement déficient de c-Cbl sur les fonctions de cellules EM. En conclusion, cette thèse identifie c-Cbl comme un régulateur critique des réponses fonctionnelles des populations de cellules T mémoires et fournit, pour la première fois chez l'homme, un mécanisme contrôlant l'hétérogénéité fonctionnelle des ces cellules. De plus, elle valide l'utilisation combinée des 'RPP arrays' et de la transduction cytosolique comme outil puissant d'analyse quantitative et fonctionnel des protéines de signalisation. Summary : Memory cells persist in a quiescent state in the body and mediate rapid and vigorous immune responses toward pathogens previously encountered. Two subsets of memory cells, namely central (CM) and effector (EM) memory cells, have been identified in humans. These subsets display high functional heterogeneity and assert critical and distinct roles in the control of protective immunity. The biochemical mechanisms controlling their functional properties remain so far poorly investigated, although their clarification is crucial for design of effective T-cell vaccine and drug development. Major limitations to these studies lie in the low frequency of memory T cell subsets and the limited amount of human specimen available. In this thesis we first implemented the innovative reverse phase protein array approach to profile 15 signalling components in human CD8 and CD4 memory T cells isolated ex vivo. The high degree of sensitivity, reproducibility and linearity achieved, allowed an excellent quantification of variations in protein expression higher than 20% in as few as 20-cell equivalent per spot. Based on the analysis of 8 to 13 healthy subjects, we showed that CD8 memory cells have a homogeneous composition of their signaling machinery while CD4 EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c- Cbl, Syk, Fyn and LAT as compared to CM cells. Moreover, in EM but not CM cells, reduced expression of negative regulator c-Cbl correlated with the expression of SLP-76, PI3K and LAT. Subsequently, we demonstrated that the higher functional properties and the lower functional threshold of EM cells is associated with reduced expression of c-Cbl. Indeed, by increasing c-Cbl content of EM cells to the same level of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism was primarily dependent on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Together, these results identify c-Cbl as a critical regulator of the functional responses of memory T cell subsets and provides, for the first time in humans, a mechanism controlling the functional heterogeneity of memory CD4 cells. Moreover it validates the combined use of RPP arrays and cytosolic transduction approaches as a powerful tool to quantitatively analyze signalling proteins and functionally assess their roles.
Resumo:
SUMMARY IL-1R and TLRs are key players in innate immunity and inflammation. Tollip was identified as a component of IL-1RI, TLR2 and TLR4 signaling complexes that activate NF-κB and MAP kinase pathways. Tollip was previously shown as a negative regulator of NF-κB and MAP Kinase activation. We have characterized the role of Tollip in IL-R/TLRs induced signaling by the analysis of the Tollip deficient mice. We showed that NF-κB and MAPK (p38, JNK, or ERK1/2) signaling appeared normal in Tollip deficient cells following stimulation with IL-1β, lipopolysaccharide (LPS), and other TLR ligands. Also IL-1β and TLRs ligands induced activation of immune cells was indistinguishable from wild-type cells. Strikingly, in Tollip deficient mice the production of the inflammatory cytokines, IL-6 or TNF-α was significantly reduced relative to control mice after treatment with physiological doses of IL-1β or LPS, whereas no difference was observed at high doses of stimulation with LPS or in LPS induced septic shock. Therefore, Tollip could be critical for regulation of optimal responses to IL-1β and LPS, in addition to its role as negative regulator of the signaling. We also studied the role of Tollip as an endocytic adaptor for IL-1R endocytosis. We could show that Il-1R is ubiquitinated after IL-1β stimulation, and that Tollip's CUE domain binds IL-1RI in an ubiquitin-dependent manner. We followed IL-1R internalization and Tollip localization by confocal microscopy. Consistent with a role for Tollip in sorting of ubiquitinated IL-1RI, a significant amount of Tollip was also localized at the late endosomal compartment. We could show that Tollip is required for efficient lysosomal targeting of ubiquitinated IL-1R1, In the absence of Tollip or in Tollip deficient cells reconstituted with a Tollip mutant (defective in ubiquitin binding) IL-1RI accumulates in enlarged late endosomes. In addition, Tollip was shown to interact with, another endocytic adapter, Toml, and both interact with IL-1RI. In conclusion, we showed that Tollip is required for IL-1β and LPS signaling for cytokine production. In addition we showed and that Tollip has a role as an endocytic adapter, necessary for efficient trafficking and lysosomal degradation of IL-1RI. Resumé Le récepteur à l'interleukine-1 (IL-1R) et les récepteurs "Toll-like" (TLRs) sont des acteurs cruciaux de la réponse immunitaire innée et de l'inflammation. La proteine Tollip a été identifiée comme étant un élément des complexes de signalisation, induits par les récepteurs IL-1RI, TLR-2 et TLR-4, qui mènent à l'activation de la voie des MAP kinases et de NF-κB. Dans de précédentes études, il a été montré que Tollip pouvait inhiber ces deux voies de signalisation. Nous avons voulu caractériser plus précisément le rôle de Tollip dans l'activation des voies de signalisation mitées par IL-1R/TLRs en utilisant une lignée murine déficiente pour la protéine Tollip. Ainsi, en absence de Tollip, les cascades d'activation de NF-κB et MAPK (p38, JNK, or ERK1/2) ne semblent pas affectées après stimulation avec IL-1β, lipopolysaccharide (LPS) ou d' autres ligands des TLR. La réponse des cellules du système immunitaire induite par la stimulation avec IL-1β et les ligands des TLR est également comparable entre les souris sauvages et les souris deficientes pour Tollip. Par contre, dans cette lignée murine, la production de cytokines proinflammatoires IL-6 et TNFα induite par la stimulation à dose physiologique de IL-1β or LPS, est réduite. Cependant, lors de stimulation à plus hautes doses de LPS ou pendant un choc septique induit par de LPS, cette réduction n'est pas observée. Ces résultats montrent que Tollip pourrait avoir un rôle déterminant dans l'activation optimale en réponse à l' IL-1β et au LPS qui s'ajoute à sa fonction inhibitrice des mêmes voies de signalisation. Nous avons aussi étudié le rôle de Tollip comme molécule adaptatatrice du mécanisme endocytique d'internalisation de l' IL-1RI. Ainsi, l' IL-1R est ubiquitiné après stimulation par l' IL-1β , permettant à Tollip de se lier au récepteur. Cette interaction est réalisée entre le domaine CUE de Tollip et l'IL-1R via l'ubiquitine. L'internalisation et la localisation intracellulaire de l'IL-1RI et de Tollip ont été observés par microscopie confocale. En accord avec le rôle de Tollip dans le triage et la recirculation des IL-1R ubiquitiné, une quantité importante de Tollip été détectée dans l' endosome tardif. Nous avons pu démontrer que Tollip était nécessaire pour diriger efficacement ubiquitiné vers les lysosomes. Dans des cellules déficientes pour Tollip, ou reconstituées avec un mutant de Tollip (MF/AA) incapable de lier l'ubiquitine, IL-1RI s'accumule dans des vesicules anormales de l'endosome tardif. Dans ce travail, nous avons pu confirmer et préciser la fonction de la protéine Tollip dans l' activation de la production de cytokines induites par l' IL-1p and le LPS lors de l'inflammation et découvrir son rôle d'adaptateur dans l' internalisation et l'endocytose de l' IL-1RI.
Resumo:
While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.