961 resultados para Triassic-Miocene successions
Resumo:
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified. Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in delta18O values coded as "Oi" and "Mi" events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific. Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.
Resumo:
Shipboard investigation of magnetostratigraphy and shore-based investigation of diatoms and calcareous nannofossils were used to identify datum events in sedimentary successions collected at Ocean Drilling Program (ODP) Leg 201 Site 1225. The goal was to extend the magnetic record previously studied at the same site, ODP Leg 138 Site 851, and provide a comprehensive age model for Site 1225. Two high-magnetic intensity zones at 0-70 and 200-255 meters below seafloor (mbsf) were correlated with lithologic Subunits IA and IC in Hole 1225A. Subunit IA (0-70 mbsf) contains the magnetic reversal record until the Cochiti Subchronozone (3.8 Ma) and has a sedimentation rate of 1.7 cm/k.y. This agrees with previous work done at Site 851. Subunit IC (200-255 mbsf) was not sampled at Site 851. Diatom and nannofossil biostratigraphy constrained this subunit, and we found it to contain the magnetic reversal record between Subchrons C4n.2r and C5n.2n (8.6-9.7 Ma), yielding a sedimentation rate of 2.7 cm/k.y. Biostratigraphy was used to establish the sedimentation rates within Subunits IB and ID (70-200 mbsf and 255-300 mbsf, respectively). These subunits had higher sedimentation rates (~3.4 cm/k.y.) and coincide with the late Miocene-early Pliocene biogenic bloom event (4.5-7 Ma) and the Miocene global cooling trend (10-15 Ma). High biogenic productivity associated with these subunits resulted in the pyritization of the magnetic signal. In lithologic Subunit ID, basement flow is another factor that may be altering the magnetic signal; however, the good correlation between the biostratigraphy and magnetostratigraphy indicates that the magnetic record was locked-in near the seafloor and suggests the age model is robust.
Resumo:
Seawater 187Os/188Os ratios for the Middle Miocene were reconstructed by measuring the 187Os/188Os ratios of metalliferous carbonates from the Pacific (DSDP 598) and Atlantic (DSDP 521) oceans. Atlantic and Pacific 187Os/188Os measurements are nearly indistinguishable and are consistent with previously published Os isotope records from Pacific cores. The Atlantic data reported here provide the first direct evidence that the long-term sedimentary 187Os/188Os record reflects whole-ocean changes in the Os isotopic composition of seawater. The Pacific and the Atlantic Os measurements confirm a long-term 0.01/Myr increase in marine 187Os/188Os ratios that began no later than 16 Ma. The beginning of the Os isotopic increase coincided with a decrease in the rate of increase of marine 87Sr/86Sr ratios at 16 Ma. A large increase of 1? in benthic foraminiferal delta18O values, interpreted to reflect global cooling and ice sheet growth, began approximately 1 million years later at 14.8 Ma, and the long-term shift toward lower bulk carbonate delta13C values began more than 2 Myr later around 13.6 Ma. The post-16 Ma increase in marine 187Os/188Os ratios was most likely forced by weathering of radiogenic materials, either old sediments or sialic crust with a sedimentary protolith. We consider two possible Miocene-specific geologic events that can account for both this increase in marine 187Os/188Os ratios and also nearly constant 87Sr/86Sr ratios: (1) the first glacial erosion of sediment-covered cratons in the Northern Hemisphere; (2) the exhumation of the Australian passive margin-New Guinea arc system. The latter event offers a mechanism, via enhanced availability of soluble Ca and Mg silicates in the arc terrane, for the maintenance of assumed low CO2 levels after 15 Ma. The temporal resolution (three samples/Myr) of the 187Os/188Os record from Site 598, for which a stable isotope stratigraphy was also constructed, is significantly higher than that of previously published records. These high resolution data suggest oscillations with amplitudes of 0.01 to 0.02 and periods of around 1 Myr. Although variations in the 187Os/188Os record of this magnitude can be easily resolved analytically, this higher frequency signal must be verified at other sites before it can be safely interpreted as global in extent. However, the short-term 187Os/188Os variations may correlate inversely with short-term benthic foraminiferal delta18O and bulk carbonate delta13C variations that reflect glacioeustatic events.