977 resultados para Transforming growth factor
Resumo:
OBJECTIVE: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced non-small-cell lung cancer are promising for further investigation. METHODS: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. RESULTS: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16 cycles. PFS at 6 months was 70%, median PFS was 14 months, and ORR was 70%. Biopsy at progression was safe and successful in 71% of the cases. CONCLUSIONS: Both combination therapies were promising for further studies. Biopsy at progression was feasible and will be part of future SAKK studies to investigate molecular mechanisms of resistance.
Resumo:
BACKGROUND & AIMS: Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS: Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS: We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION: NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.
Resumo:
We had described that epidermal growth factor (EGF) interfered with the lipolytic effect of catecholamines in isolated adipocytes. Since catecholamines stimulate the release of EGF from submandibular salivary glands to blood plasma in male mice, we studied whether EGF affected also the lipolytic response to adrenaline in whole animals. We studied the effect of adrenaline in sialoadenectomized and sham-operated mice receiving or not a high dose of EGF following adrenaline injection. There was no difference in plasma EGF concentration between sham-operated and sialoadenectomized animals receiving saline. After adrenaline administration plasma EGF increased by 20-fold in sham-operated but did not increase in sialoadenectomized mice. Indeed, the increase was much higher (more than 100-fold) in mice receiving exogenous EGF. The effect of adrenaline on plasma concentration of both glycerol and nonesterified fatty acids was higher as lower was plasma EGF concentration. Isolated adipocytes obtained from sham-operated or sialoadenectomized mice had identical lipolytic response to adrenaline. The lipolytic response of adipocytes to isoproterenol was decreased by addition of EGF. To study whether the interference with the in vivo lipolytic effect of adrenaline had further metabolic consequences, we measured plasma b-hydroxybutyrate concentration in plasma. There was no difference in the response to adrenaline between sham-operated and sialoadenectomized mice in spite of the difference in plasma nonsterified fatty acid concentration. Studies in isolated hepatocytes indicated that ketogenesis run at near maximal rate in this range of substrate concentration. These results suggest that EGF in the physiological range decreases the lipolytic effect of adrenaline but does not compromise further metabolic events like the enhancement of ketogenesis.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
CONTEXT: Compensatory increases in FGF23 with increasing phosphate intake may adversely impact health. However, population and clinical studies examining the link between phosphate intake and FGF23 levels have focused mainly on populations living in highly industrialized societies in which phosphate exposure may be homogenous. OBJECTIVE: Contrast dietary phosphate intake, urinary measures of phosphate excretion and FGF23 levels across populations that differ by level of industrialization. DESIGN: Cross-sectional analysis of three populations Setting: Maywood, IL, U.S., Mah|fe Island, Seychelles, and Kumasi, Ghana Participants: Adults with African ancestry aged 25-45 years Main Outcome: Fibroblast growth factor 23 (FGF23) levels Results: The mean age was 35.1 (6.3) years and 47.9% were male. Mean phosphate intake and fractional excretion of phosphate were significantly higher in the U.S. vs. Ghana while no significant difference in phosphate intake or fractional excretion of phosphate was noted between U.S. and Seychelles for men or women. Overall, median FGF23 values were 57.41 RU/ml (IQR 43.42, 75.09) in U.S., 42.49 RU/ml (IQR 33.06, 55.39) in Seychelles and 33.32 RU/ml (IQR 24.83, 47.36) in Ghana. In the pooled sample, FGF23 levels were significantly and positively correlated with dietary phosphate intake (r=0.11; P < 0.001), and the fractional excretion of phosphate (r=0.13; P < 0.001) but not with plasma phosphate levels (-0.001; P = 0.8). Dietary phosphate intake was significantly and positively associated with the fractional excretion of phosphate (r=0.23; P < 0.001). CONCLUSION: The distribution of FGF23 levels in a given population may be influenced by the level of industrialization, likely due to differences in access to foods preserved with phosphate additives.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
OBJECTIVES: To correlate the expression of p53 protein and VEGF with the prognosis of patients submitted to curative resection to treat esophageal adenocarcinoma. METHODS: Forty-six patients with esophageal adenocarcinoma, submitted to curative resection, were studied. The expressions of p53 protein and VEGF were assessed by immunohistochemistry in 52.2% and 47.8% of tumors, respectively. RESULTS: P53 protein and VEGF expressions coincided in 26% of the cases, and no correlation between these expressions was observed. None of the clinicopathological factors showed a significant correlation with p53 protein or VEGF expressions. There was no significant association between p53 protein and VEGF expressions and long-term survival. CONCLUSION: The expression of p53 protein and VEGF did not correlate with prognosis in esophageal adenocarcinoma patients submitted to curative resection.
Resumo:
The study aimed to quantify the concentrations of free IGF-I in serum and fluid of ovarian follicles in pre-pubertal gilts and describe the ovarian morphology by measuring the size of the ovaries and counting the number of surface follicles. Ovaries (n=1,000) from pre-pubertal gilts were obtained immediately after slaughter. A total of 10 samplings were performed, with ovaries obtained from 50 females for each collection. The follicles situated on the surface of each ovary were classified as small (SFs, 2 to 5mm in diameter) or large (LFs 6 to 10mm in diameter) and the follicular fluid was obtained by follicle aspiration. The collection of serum samples was performed after the gilts exsanguination using sterile tubes. From the pool of serum and follicular fluid obtained from 50 females, the concentration of free IGF-I was determined in each sample using an enzyme immunoassay kit (ELISA). The description of ovarian morphometry was performed in 100 ovaries from randomly selected gilts. The larger and smaller lengths of ovaries were measured, and the total number of SFs and LFs present on the surface of each ovary were also counted. The IGF-I concentration was greater (P<0.05) in LFs (170.92±88.29 ng/mL) compared with SFs (67.39±49.90ng/mL) and serum (73.48±34.63ng/mL). The largest and smallest length of the ovaries was 26.0±3.0 and 19.0mm ±2.0mm, respectively. The number of SFs (70.86±25.76) was greater (P<0.01) than LFs (6.54±5.26). The study concluded that LFs present greater levels of IGF-I when compared with SFs and blood, which is related to increased activity of the LFs and its differentiation to ovulation. In addition, ovaries of pre-pubertal gilts have a higher number of SFs compared to LFs. Therefore, our study demonstrated unique data regarding the physiological concentration of free IGF-I in ovarian follicles, that can be used in future research to evaluate the addition of this hormone in the in vitro production media of porcine embryos with the goal to improve the technique efficiency.
Resumo:
The aim of this study was to investigate the effects of the insulin-like growth factor -I (IGF-I) on survival, activation (transition from primordial to primary follicles) and growth of caprine preantral follicles cultured in vitro. Fragments of ovarian cortex were cultured for one and seven days in the absence or presence of IGF-I (0, 50 and 100ng/ml). The non-cultured and cultured tissues were processed and analyzed by histology and transmission electron microscopy. The culture for one day in a medium with 100ng/ml of IGF-I showed 86.7% of morphologically normal follicles. These results were similar (P>0.05) to the percentage of normal follicles found in the control (96.7%). It was also found that this medium increased the percentage of follicular activation (developing follicles) with one day of culture. The oocyte and follicular diameters remained similar to the control by culturing for one day in a medium containing 100ng/ml of IGF-I. The ultrastructural analysis did not confirm the integrity of the follicular fragments in a medium containing IGF-I (100ng/ml) after one and seven days of culture. In conclusion, this study demonstrated that the addition of 100 ng/ml of IGF-I in the culture medium enables the development of preantral follicles of goats with one day of culture. However, it is not sufficient to maintain the follicular integrity and the follicular survival rate after seven days of culture.
Resumo:
The actions of fibroblast growth factors (FGFs), particularly the basic form (bFGF), have been described in a large number of cells and include mitogenicity, angiogenicity and wound repair. The present review discusses the presence of the bFGF protein and messenger RNA as well as the presence of the FGF receptor messenger RNA in the rodent brain by means of semiquantitative radioactive in situ hybridization in combination with immunohistochemistry. Chemical and mechanical injuries to the brain trigger a reduction in neurotransmitter synthesis and neuronal death which are accompanied by astroglial reaction. The altered synthesis of bFGF following brain lesions or stimulation was analyzed. Lesions of the central nervous system trigger bFGF gene expression by neurons and/or activated astrocytes, depending on the type of lesion and time post-manipulation. The changes in bFGF messenger RNA are frequently accompanied by a subsequent increase of bFGF immunoreactivity in astrocytes in the lesioned pathway. The reactive astrocytes and injured neurons synthesize increased amount of bFGF, which may act as a paracrine/autocrine factor, protecting neurons from death and also stimulating neuronal plasticity and tissue repair
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 µl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P < 0.05), whereas the doses of 0.5 (P < 0.05) and 5.0 ng (P < 0.01) NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05) and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.
Resumo:
The biologic basis of the negative prognosis of plasmablastic myeloma is not fully understood. To determine whether histologically aggressive multiple myeloma (MM) is associated with a more angiogenic marrow environment, bone marrow samples from 50 recently diagnosed MM patients were evaluated. Twelve percent (6/50) of patients presented plasmablastic MM, and this feature correlated with moderate/strong intensity of vascular endothelial growth factor staining of plasma cells (P = 0.036). Although plasmablastic MM was not associated with increasing of microvessel density, this new evidence of increased expression of vascular endothelial growth factor on plasmablasts suggests that the adverse prognosis conferred by plasmablastic disease may be due, at least in part, to secretion of this angiogenic cytokine, also suggesting that the subset of MM patients with plasmablastic features may derive particular benefit from antiangiogenic therapies.
Resumo:
Our objective was to determine the presence of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 and specific tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) in tumor samples obtained from patients with primary breast cancer. We attempted to correlate these findings with the status of the sentinel lymph node (SLN) and clinical-pathological characteristics such as age, tumor size, histological type, histological grade, and vascular invasion. Tumor samples from 88 patients with primary breast cancer were analyzed. The immunoreactivity of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tumors was correlated with clinical and pathological features, as well as SLN status. Nonparametric, Mann-Whittney, Kruskal-Wallis, and Spearmann tests were used. Categorical variables were analyzed by the Pearson test. No statistically significant correlation was found between the amount of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 and the presence of tumor cells in the SLN. However, larger tumor diameter (P < 0.01) and the presence of vascular invasion (P < 0.01) were correlated positively with a positive SLN. A significant correlation of higher VEGF levels (P = 0.04) and lower TIMP-1 levels (P = 0.04) with ductal histology was also observed. Furthermore, lower TIMP-2 levels showed a statistically significant correlation with younger age (<50 years) and larger tumor diameter (2.0-5.0 cm). A positive SLN correlated significantly with a larger tumor diameter and the presence of vascular invasion. Higher VEGF and lower TIMP-1 levels were observed in patients with ductal tumors, while higher TIMP-1 levels were observed in lobular tumors.
Resumo:
Vascular endothelial growth factor (VEGF) is one of the most potent endothelial cell mitogens and plays a critical role in angiogenesis. Polymorphisms in this gene have been evaluated in patients with several types of cancer. The objectives of this study were to determine if there was an association of the -1154G/A polymorphism of the VEGF gene with head and neck cancer and the interaction of this polymorphism with lifestyle and demographic factors. Additionally, the distribution of the VEGF genotype was investigated with respect to the clinicopathological features of head and neck cancer patients. The study included 100 patients with histopathological diagnosis of head and neck squamous cell carcinoma. Patients with treated tumors were excluded. A total of 176 individuals 40 years or older were included in the control group and individuals with a family history of neoplasias were excluded. Analysis was performed after extraction of genomic DNA using the real-time PCR technique. No statistically significant differences between allelic and genotype frequencies of -1154G/A VEGF polymorphism were identified between healthy individuals and patients. The real-time PCR analyses showed a G allele frequency of 0.72 and 0.74 for patients and the control group, respectively. The A allele showed a frequency of 0.28 for head and neck cancer patients and 0.26 for the control group. However, analysis of the clinicopathological features showed a decreased frequency of the A allele polymorphism in patients with advanced (T3 and T4) tumors (OR = 0.36; 95%CI = 0.14-0.93; P = 0.0345). The -1154A allele of the VEGF gene may decrease the risk of tumor growth and be a possible biomarker for head and neck cancer. This polymorphism is associated with increased VEGF production and may have a prognostic importance.