939 resultados para Trace and Rare Earth Element


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth elements (REE) and stable isotope compositions (delta C-13 and delta O-18) of shark teeth and phosphatic coprolites were analyzed from the Lower Maastrichtian layers of the El Haria Formation and two sequences of the Paleocene-Eocene (P/E) Chouabine Formation in the Gafsa Basin (south western of Tunisia) in order to trace the sedimentological, climatic and oceanographic conditions. The REE chemistry and their distribution in the two archives are the same for each of the studied layers indicating that the coprolites and shark teeth experienced the same early diagenetic environments. However major differences occur between the Maastrichtian and the P/E reflecting changes in the depositional conditions. The Early Maastrichtian burial environment tended to be more anoxic with REE derived from reduced FeO. While in the P/E the REE patterns mimic the modern oxic-suboxic seawater, the REE source from remineralisation of organic coating could have more significance. The oxygen isotope compositions of the structural phosphates (delta O-18(PO4)) indicate a stable and warm climate during both studied time intervals. A small offset (-0.4 parts per thousand) in the delta O-18 value between the coprolites and shark teeth show minor thermal gradient between bottom and surface water. The pronounced negative shift of 34%. in delta C-13 values recorded in the upper part of the Chouabine Formation was ascribed to the Paleocene-Eocene boundary. At the same time the lack of negative change in the delta O-18 is explained by the semi-closed situation of the Gafsa Basin, which situation also played an important role in the evolution of the organic matters in the sediment resulting in the exceptional low delta C-13 values. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tests are described showing the results obtained for the determination of REE and the trace elements Rb, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th and U with ICP-MS methodology for nine basaltic reference materials, and thirteen basalts and amphibolites from the mafic-ultramafic Niquelandia Complex, central Brazil. Sample decomposition for the reference materials was performed by microwave oven digestion (HF and HNO(3), 100 mg of sample), and that for the Niquelandia samples also by Parr bomb treatment (5 days at 200 degrees C, 40 mg of sample). Results for the reference materials were similar to published values, thus showing that the microwave technique can be used with confidence for basaltic rocks. No fluoride precipitates were observed in the microwave-digested solutions. Total recovery of elements, including Zr and Hf, was obtained for the Niquelandia samples, with the exception of an amphibolite. For this latter sample, the Parr method achieved a total digestion, but not so the microwave decomposition; losses, however, were observed only for Zr and Hf, indicating difficulty in dissolving Zr-bearing minerals by microwave acid attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1 - 4, M representing a late transition metal from groups 8 - 12, and E belonging to groups 13 - 15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E = In, Cd, Mg), GdPdSb, GdNiSb, REAuSn (RE = Gd, Er, Tm) and RENiBi (RE = Pr, Sm, Gd - Tm, Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a negative GMR. Inhomogeneous nonmagnetic LuNiBi samples show no negative GMR, but a large positive MR of 27.5% at room temperature, which is interesting for application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Leg 80 basalts drilled on the Porcupine Abyssal Plain 10 km southwest of Goban Spur (Hole 550B) and on the western edge of Goban Spur (Hole 551), respectively, are typical light-rare-earth-element- (LREE-) depleted oceanic tholeiites. The basalts from the two holes are almost identical; most of their primary geochemical and mineralogical characteristics have been preserved, but they have undergone some low-temperature alteration by seawater, such as enrichment in K, Rb, and Cs and development of secondary potassic minerals of the "brownstone facies." K/Ar dating fail to give realistic emplacement ages; the apparent ages obtained become younger with alteration (causing an increase in K2O). Hole 551 basalts are clearly different from the continental tholeiites emplaced on the margins of oceanizing domains during the prerift and synrift stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hole 433C, a multiple re-entry hole drilled in 1862 meters of water on Suiko Seamount in the central Emperor Seamounts, penetrated 387.5 meters of lava flows overlain by 163.0 meters of sediments. The recovered volcanic rocks consist of three flow units (1-3) of alkalic basalt underlain by more than 105 flows or flow lobes (Flow Units 4-67) of tholeiitic basalt. This study reports trace-element, including rare-earth element (REE), data for 25 samples from 24 of the least altered tholeiitic flows. These data are used to evaluate the origin and evolution of tholeiitic basalts from Suiko Seamount and to evaluate changes in the mantle source between the time when Suiko Seamount formed, 64.7 ± 1.1 m.y. ago (see Dalrymple et al., 1980), and the present day. Stearns (1946), Macdonald and Katsura (1964) and Macdonald (1968) have established that chemically distinct lavas erupt during four eruptive stages of development of a Hawaiian volcano. These stages, from initial to final, are shield-building, caldera-filling, post-caldera, and post-erosional. The lavas of the shield-building stage are tholeiitic basalts, which erupt rapidly and in great volume. The shield-building stage is quickly followed by caldera collapse and by the caldera-filling stage, during which the caldera is filled by tholeiitic and alkalic lavas. During the post-caldera stage, a relatively thin veneer of alkalic basalts and associated differentiated lavas are erupted, sometimes accompanied by minor eruptions of tholeiitic lava. After a period of volcanic quiescence and erosion, lavas of the nephelinitic suite, which include both alkalic basalts and strongly SiO2-undersaturated nephelinitic basalts, may erupt from satellite vents during the post-erosional stage. Many Hawaiian volcanoes develop through all four stages; but individual volcanoes have become extinct before the cycle is complete. We interpret the tholeiitic lavas drilled on Suiko Seamount to have erupted during either the shield-building or the caldera-filling stage, and the overlying alkalic flows to have erupted during either the caldera-filling or the post-caldera stage (see Kirkpatrick et al., 1980).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geochemistry of basalts recovered during Leg 72 is described with emphasis on trace elements. Only Hole 516F penetrated basement; the basalts recovered are plagioclase-phyric and olivine-phyric and pervasively altered. Chemically, the basalts from Hole 516F are rather uniform in composition. However, four distinct geochemical units can be recognized, although the chemistry of two of the units appears to be controlled by chemical mobility associated with alteration. The two less-altered units cannot be related by fractional crystallization processes. Hole 516F basalts have a trace element chemistry characteristic of T-type mid-ocean ridge basalt; rare-earth element patterns (as indicated by Ce/Y ratios) are mildly fractionated flight rare-earth element enriched), and a number of incompatible element ratios are close to chondritic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth element (REE) plus yttrium (Y) patterns of modem seawater have characteristic features that can be used as chemical fingerprints. Reliable proxies for marine REE + Y chemistry have been demonstrated from a large geological time span, including Archaean banded iron formation (BIF), stromatolitic limestone, Phanerozoic reef carbonate and Holocene microbialite. Here we present new REE + Y data for two distinct suites of early Archaean (ca. 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland, whose interrelationships, if any, have been much debated in recent literature. The first suite comprises mangetite-quartz BIF, magnetite-carbonate BIF and banded magnetite-rich quartz rock, mostly from the Isua Greenstone Belt (IGB). The REE + Y patterns, particularly diagnostic anomalies (Ce/Ce*, Pr/Pr*), are closely related to those of published seawater proxies. The second suite includes banded quartz-pyroxene-amphibole +/- garnet rocks with minor magnetite from the so-called Akilia Association enclaves (in early Archaean granitoid gneisses) of the coastal region, some 150 km southwest of the IGB. Rocks of this type from one much publicised and highly debated locality (the island of Akilia) have been identified by some workers [Nature 384 (1996) 55; Geochim. Cosmochim. Acta 61 (1997) 2475] as BIF-facies, and their C-13-depleted signature in trace graphite interpreted as a proxy for earliest life on Earth. However, REE + Y patterns of the Akilia Association suite (except for one probably genuine magnetite-rich BIF from Ugpik) are inconsistent with a seawater origin. We agree with published geological and geochemical (including REE) work [Science 296 (2002) 1448] that most of the analysed Akilia rocks are not chemical sediments, and that C-isotopes in such rocks therefore cannot be used as biological proxies. Application of the REE + Y discriminant for the above two rock suites has been facilitated in this study by the use of MC-ICP technique which yields a more complete and precise REE + Y spectrum than was available in many previous studies. (C) 2004 Elsevier B.V. All rights reserved.