925 resultados para Timing errors
Resumo:
Immature and mature calcretes from an alluvial terrace sequence in the Sorbas basin, southeast Spain, were dated by the U-series isochron technique. The immature horizons consistently produced statistically reliable ages of high precision. The mature horizons typically produced statistically unreliable ages but, because of linear trends in the dataset and low errors associated with each data point, it was still possible to place a best-fit isochron through the dataset to produce an age with low associated uncertainties. It is, however, only possible to prove that these statistically unreliable ages have geochronological significance if multiple isochron ages are produced for a single site, and if these multiple ages are stratigraphically consistent. The geochronological significance of such ages can be further proven if at least one of the multiple ages is statistically reliable. By using this technique to date calcretes that have formed during terrace aggradation and at the terrace surface after terrace abandonment it is possible not only to date the timing of terrace aggradation but also to constrain the age at which the river switched from aggradation to incision. This approach, therefore, constrains the timing of changes in fluvial processes more reliably than any currently used geochronological procedure and is appropriate for dating terrace sequences in dryland regions worldwide, wherever calcrete horizons are present. (c) 2005 University of Washington. All rights reserved.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.
Resumo:
We argue that impulsiveness is characterized by compromised timing functions such as premature motor timing, decreased tolerance to delays, poor temporal foresight and steeper temporal discounting. A model illustration for the association between impulsiveness and timing deficits is the impulsiveness disorder of attention-deficit hyperactivity disorder (ADHD). Children with ADHD have deficits in timing processes of several temporal domains and the neural substrates of these compromised timing functions are strikingly similar to the neuropathology of ADHD. We review our published and present novel functional magnetic resonance imaging data to demonstrate that ADHD children show dysfunctions in key timing regions of prefrontal, cingulate, striatal and cerebellar location during temporal processes of several time domains including time discrimination of milliseconds, motor timing to seconds and temporal discounting of longer time intervals. Given that impulsiveness, timing abnormalities and more specifically ADHD have been related to dopamine dysregulation, we tested for and demonstrated a normalization effect of all brain dysfunctions in ADHD children during time discrimination with the dopamine agonist and treatment of choice, methylphenidate. This review together with the new empirical findings demonstrates that neurocognitive dysfunctions in temporal processes are crucial to the impulsiveness disorder of ADHD and provides first evidence for normalization with a dopamine reuptake inhibitor.
Resumo:
Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.
Resumo:
A full troposphere-stratosphere-mesosphere global circulation model is used in a set of idealised experiments to investigate the sensitivity of the Northern Hemisphere winter stratospheric flow to improvements in the equatorial zonal winds. The model shows significant sensitivity to variability in the upper equatorial stratosphere, the imposition of SAO and QBO like variability in this region advances the timing of midwinter sudden warmings by about one month. Perturbations to the lower equatorial stratosphere are mainly found to influence early winter polar variability. These results suggest that it is important to pay attention to the capability of models to simulate realistic variability in the upper equatorial stratosphere.
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.