817 resultados para Time varying control systems
Resumo:
Bibliography: p. 90-92.
Resumo:
"Final Report, November 1997-October 1999."
Resumo:
"January 1991."
Resumo:
Preprint of IRF report, issued June 1977.
Resumo:
Includes bibliography.
Resumo:
Mode of access: Internet.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Simple models of time-varying risk premia are used to measure the risk premia in long-term UK government bonds. The parameters of the models can be estimated using nonlinear seemingly unrelated regression (NL-SUR), which permits efficient use of information across the entire yield curve and facilitates the testing of various cross-sectional restrictions. The estimated time-varying premia are found to be substantially different to those estimated using models that assume constant risk premia. © 2004 Taylor and Francis Ltd.