998 resultados para Ti-doped sapphire
Resumo:
A simple, novel, and fast method of preparation of metal nitride powders (GaN, TiN, and VN) using microwave-assisted carbothermal reduction and nitridation has been demonstrated. The procedure uses the respective oxides and amorphous carbon powder as the starting materials. Ammonia gas is found to be more effective in nitridation than high-purity N-2 gas. Complete nitridation is achieved by the use of a slight excess of amorphous carbon. Metals themselves are not found to be effectively nitrided. The products were characterized using XRD, TEM, and SAED and found to possess good crystallinity and phase purity. The method can be of general applicability for the preparation of metal nitrides.
Resumo:
Ca-doped manganite La1-xCaxMnO3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior.
Resumo:
Unstable flow during hot deformation of an alpha(2) titanium aluminide alloy Ti-24Al-20Nb alloy was analysed using two criteria, one of which was developed by Jonas and the other by Kalyankumar. Workability maps were constructed using the alpha parameter as suggested by Semiatin and Lahoti and instability maps were constructed based on the stability parameter xi(epsilon) as suggested by Kalyankumar. Microstructural study was carried out on deformed specimens to validate the two criteria. The results of the two criteria were compared. The particular case of highly negative alpha values has been discussed in detail and it is shown that these correspond to regions of unstable flow.
Resumo:
We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.
Resumo:
We report low-frequency 1/f-noise measurements of degenerately doped Si:P delta layers at 4.2 K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead, the interaction of electrons with very few active structural two-level systems may explain the observed noise magnitude.
Resumo:
We have studied the power spectral density [S(f) = gamma/f(alpha)] of universal conductance fluctuations (UCF's) in heavily doped single crystals of Si, when the scatterers themselves act as the primary source of dephasing. We observed that the scatterers, with internal dynamics like two-level-systems, produce a significant, temperature-dependent reduction in the spectral slope alpha when T less than or similar to 10 K, as compared to the bare 1/f (alphaapproximate to1) spectrum at higher temperatures. It is further shown that an upper cutoff frequency (f(m)) in the UCF spectrum is necessary in order to restrict the magnitude of conductance fluctuations, [(deltaG(phi))(2)], per phase coherent region (L-phi(3)) to [(deltaGphi)(2)](1/2) less than or similar to e(2)/h. We find that f(m) approximate to tau(D)(-1), where tau(D) = L-2/D, is the time scale of the diffusive motion of the electron along the active length (L) of the sample (D is the electron diffusivity).
Resumo:
We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials.
Resumo:
As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.
Resumo:
Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.
Resumo:
The applicability of the confusion principle and size factor in glass formation has been explored by following different combinations of isoelectronic Ti, Zr and Hf metals. Four alloys of nominal composition Zr41.5Ti41.5Ni17, Zr41.5Hf41.5Ni17, Zr25Ti25Cu50 and Zr34Ti16Cu50 have been rapidly solidified to obtain an amorphous phase and their crystallisation behaviour has been studied. The Ti-Zr-Ni alloy crystallises in three steps. Initially this alloy precipitates icosahedral quasicrystalline phase, which on further heat treatment precipitates cF96 Zr2Ni phase. The Zr-Hf-Ni alloy can not be amorphised under the same experimental conditions. The amorphous Zr-Ti-Cu alloys at the initial stages of crystallisation phase-separateinto two amorphous phases and then on further heat treatment cF24 Cu5Zr and oC68 Cu10Zr7 phase are precipitated. The lower glass-forming abilityof Zr-Hf-Ni alloy and the crystallisation behaviour of the above alloys has been studied. The rationale behind nanoquasicrystallisation and the formation of other intermetallic phases has been explained.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E11 and E21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5 -10 meV below the E21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E21 transition. The PL intensity of all the three transitions E11, FES and E21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E11 and E21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
We report a low-temperature synthesis of La1.95Na0.05NiO4 from NaOH flux, La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 phases from KOH flux at 400 degreesC. Alkali-doped LaNiO3 can be prepared in KOH, but not in NaOH flux and La2NiO4 can be prepared in NaOH, but not in KOH flux. The flux-grown oxides were characterized by powder X-ray Rietveld profile analysis and electron microscopy. Sodium doped La2NiO4 crystallizes in orthorhombic structure and potassium doped LaNiO3-phases crystallizes in rhombohedral structure. La1.95Na0.05NiO4 is weakly paramagnetic and semiconducting while La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 show Pauli paramagnetic and metallic behavior. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Heavily Mn-doped II-VI-V-2 semiconductors, such as CdGeP2 and ZnGeP2 have been prepared by depositing Mn on single crystalline substrate at nearly 400 T in an ultra high vacuum chamber. Well-defined ferromagnetic hysteresis with a saturation behavior appears in the magnetization curve up to above room temperature. The chemical states of the ZDGeP(2):Mn interface has been clarified by a careful in situ photoemission spectroscopy. The as-prepared surface consists of Ge-rich, metallic Mn compound. In and below the sub-surface region, dilute divalent Mn species as precursors of the DMS phase exist. No MnP phase was observed at any stage of the depth profile. Theoretical band-calculation suggests that the system with vacancies (Cd, V-c, Mn)GeP2 or a non-stoichiometric (Cd, Ge, Mn)GeP2 are ferromagnetic and energetically stable although ferromagnetism is not stable in a stoichiometric compound (Cd, Mn)GeP2. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A novel wet-chemical precipitation method is optimized for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The nanoparticles were stabilized by capping with polyvinyl pyrrolidone (PVP). XRD studies show the phase singularity of ZnS particles having zinc-blende (cubic) structure. TEM as well as XRD line broadening indicate that the average crystallite size of undoped samples is similar to2 nm. The effects of change in stoichiometry and doping with Cu+ and halogen on the photoluminescence properties of ZnS nanophosphors have been investigated. Sulfur vacancy (Vs) related emission with peak maximum at 434 nm has been dominant in undoped ZnS nanoparticles. Unlike in the case of microcrystalline ZnS phosphor, incorporation of halogens in nanoparticles did not result V-Zn related self-activated emission. However, emission characteristics of nanophosphors have been changed with Cu+ activation due to energy transfer from vacancy centers to dopant centers. The use of halogen as co-activator helps to increase the solubility of Cu+ ions in ZnS lattice and also enhances the donor-acceptor type emission efficiency. With increase in Cu+ doping, Cu-Blue centers (CuZn-Cui+), which were dominant at low Cu+ concentrations, has been transformed into Cu-Green (Cu-Zn(-)) centers and the later is found to be situated near the surface regions of nanoparticles. From these studies we have shown that, by controlling the defect chemistry and suitable doping, photoluminescence emission tunability over a wide wavelength range, i.e., from 434 to 514 nm, can be achieved in ZnS nanophosphors. (C) 2003 Elsevier B.V. All rights reserved.