945 resultados para Ti-Mo alloys
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.
Resumo:
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.
Resumo:
Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.
Resumo:
Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone contours, and depending on the material of the plate, different outcomes have been reported along with postoperative complications. A comparative analysis of Stainless Steel 316L and Ti-6Al-4V alloys was carried to estimate the safe bending limit for appropriate fits. The results from the ANSYS FEA simulations were validated with experiments based on ASTM F382-99. It is found that SS316L is better suited for large deformations (up to 16˚ in proximal tip and 7.5˚ in distal end) and Ti for smaller deformation contours (up to 3˚ in proximal tip and 1.8˚ in distal end). The results of this study have profound implications for the choice of plates based on preliminary radiographical fracture examinations to ensure better fixation and higher rates of union of distal tibial fractures.
Resumo:
Complexes of the type \[M(phen)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and phen = 1,10-phenanthroline) were found to co-crystallize to form molecular alloys (solid solutions of molecules) with general formula \[MAxMB1–x(phen)3](PF6)2·0.5H2O in which the relative concentrations of the metal complexes in the crystals closely match those in the crystallizing solution. Consequently, the composition of the co-crystals can be accurately predicted and controlled by modulating the relative concentrations of the metal complexes in the crystallizing solution. Although they are chemically and structurally similar, complexes of the type \[M(bipy)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and bipy = 2,2′-bipyridine) display markedly different behavior upon co-crystallization. In this case, the resulting co-crystals of general formula \[MAxMB1–x(bipy)3](PF6)2 have relative concentrations of the constituent complexes that are markedly different from the relative concentrations of the complexes initially present in the crystallizing solution. For example, when the nickel and iron complexes are co-crystallized from a solution containing a 50:50 ratio of each, the result is the formation of some crystals with a higher proportion of iron and others with a higher proportion of nickel. The relative concentrations of the metal complexes in the crystals can vary from those in the crystallizing solutions by as much as 15%. This result was observed for a range of combinations of metal complexes (Ni/Fe, Ni/Ru, and Fe/Ru) and a range of starting concentrations in the crystallizing solutions (90:10 through to 10:90 in 10% increments). To explain this remarkable result, we introduce the concept of “supramolecular selection”, which is a process driven by molecular recognition that leads to the partially selective aggregation of like molecules during crystallization.
Resumo:
The deformation behaviour of Mg-5%AI alloys and its dependence with gain size and strain rate were investigated using nanoindentation. The grain sizes were successfully reduced below 100 nm via mechanical alloying method. It was found that the strain rate sensitivity increased with decreasing grain size. The smaller activation volumes and the plastic deformation mechanisms involving grain boundary activities are considered to contribute to the increase of strain rate sensitivity in the nanocrystalline alloys.