978 resultados para Testing Power
Resumo:
The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p
Resumo:
With the advent of object-oriented languages and the portability of Java, the development and use of class libraries has become widespread. Effective class reuse depends on class reliability which in turn depends on thorough testing. This paper describes a class testing approach based on modeling each test case with a tuple and then generating large numbers of tuples to thoroughly cover an input space with many interesting combinations of values. The testing approach is supported by the Roast framework for the testing of Java classes. Roast provides automated tuple generation based on boundary values, unit operations that support driver standardization, and test case templates used for code generation. Roast produces thorough, compact test drivers with low development and maintenance cost. The framework and tool support are illustrated on a number of non-trivial classes, including a graphical user interface policy manager. Quantitative results are presented to substantiate the practicality and effectiveness of the approach. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Purpose: The aims of this study are two-fold: first, to analyze intraindividual allometric development of aerobic power of 73 boys followed at annual intervals from 8 to 16 yr, and second, to relate scaled aerobic power with level of habitual physical activity and biological maturity status. Methods: Peak (V) over dot O-2 (treadmill), height, and body mass were measured. Biological maturity was based on age at peak height velocity (PHV) and level of physical activity was based on five assessments between 11 and 15 yr and at 17 yr. Interindividual and intraindividual allometric coefficients were calculated. Multilevel modeling was applied to verify if maturity status and activity explain a significant proportion of peak (V) over dot O-2 after controlling for other explanatory characteristics. Results: At most age levels, interindividual allometry coefficients for body mass exceed k = 0.750. Intraindividual coefficients of peak (V) over dot O-2 by body mass vary widely and range from k' = 0,555 to k' = 1,178. Late maturing boys have smaller k' coefficients than early maturing boys. Conclusion: Peak (V) over dot O-2 is largely explained by body mass, but activity level and its interaction with maturity status contribute independently to peak (V) over dot O-2 even after adjusting for body mass.
Resumo:
In Ruddock and Others v Vadarlis and Others the Federal Court had to balance two fundamental but competing rights, the right of the state to secure its frontiers and the rights of individuals not to be subjected to unlawful detention - Court's task was hampered by intense public debate over the illegal refugee crisis - in the wake of 11 September 2001 and the Tampa crisis, the Federal Government has rushed through several amendments to migration laws and border protection legislation.
Testing the applicability of molecular genetic markers to population analyses of scleratinian corals
Resumo:
The abundance of coral reefs worldwide is in decline, and despite the ecological importance of reefs, only a limited number of DNA markers have been identified for scleractinian coral genetic studies. This paper addresses the search for new coral molecular markers and investigates the applicability of the cytochrome c oxidase subunit I (COI), the internal transcribed spacer region 1 (ITS1), and the pocilloporin gene to the question of intraspecific variation in the scleractinian coral Pocillopora verrucosa along the southeast African coastline. The COI fragment was 710 bp long and was identical for P. verrucosa (n = 10) and P. damicornis (n = 3). Only two different ITS1 sequences were found (differing by 13 bp insertion), but more importantly, 24% of the sequences were heterogenous indicating that different multiple copies of the sequence exist. Pocilloporin is an intronless gene that was absolutely conserved throughout all P. verrucosa populations (n = 50). Thus, the three DNA regions studied appear unsuitable for the population genetic analyses of P. verrucosa.
Resumo:
The aim of this study was to assess the variation between neuropathologists in the diagnosis of common dementia syndromes when multiple published protocols are applied. Fourteen out of 18 Australian neuropathologists participated in diagnosing 20 cases (16 cases of dementia, 4 age-matched controls) using consensus diagnostic methods. Diagnostic criteria, clinical synopses and slides from multiple brain regions were sent to participants who were asked for case diagnoses. Diagnostic sensitivity, specificity, predictive value, accuracy and variability were determined using percentage agreement and kappa statistics. Using CERAD criteria, there was a high inter-rater agreement for cases with probable and definite Alzheimer's disease but low agreement for cases with possible Alzheimer's disease. Braak staging and the application of criteria for dementia with Lewy bodies also resulted in high inter-rater agreement. There was poor agreement for the diagnosis of frontotemporal dementia and for identifying small vessel disease. Participants rarely diagnosed more than one disease in any case. To improve efficiency when applying multiple diagnostic criteria, several simplifications were proposed and tested on 5 of the original 210 cases. Inter-rater reliability for the diagnosis of Alzheimer's disease and dementia with Lewy bodies significantly improved. Further development of simple and accurate methods to identify small vessel lesions and diagnose frontotemporal dementia is warranted.
Resumo:
Landscape metrics are widely applied in landscape ecology to quantify landscape structure. However, many are poorly tested and require rigorous validation if they are to serve as reliable indicators of habitat loss and fragmentation, such as Montreal Process Indicator 1.1e. We apply a landscape ecology theory, supported by exploratory and confirmatory statistical techniques, to empirically test landscape metrics for reporting Montreal Process Indicator 1.1e in continuous dry eucalypt forests of sub-tropical Queensland, Australia. Target biota examined included: the Yellow-bellied Glider (Petaurus australis); the diversity of nectar and sap feeding glider species including P. australis, the Sugar Glider P. breviceps, the Squirrel Glider P. norfolcensis, and the Feathertail Glider Acrobates pygmaeus; six diurnal forest birds species; total diurnal bird species diversity; and the density of nectar-feeding diurnal bird species. Two scales of influence were considered: the stand-scale (2 ha), and a series of radial landscape extents (500 m - 2 km; 78 - 1250 ha) surrounding each fauna transect. For all biota, stand-scale structural and compositional attributes were found to be more influential than landscape metrics. For the Yellow-bellied Glider, the proportion of trace habitats with a residual element of old spotted-gum/ironbark eucalypt trees was a significant landscape metric at the 2 km landscape extent. This is a measure of habitat loss rather than habitat fragmentation. For the diversity of nectar and sap feeding glider species, the proportion of trace habitats with a high coefficient of variation in patch size at the 750 m extent was a significant landscape metric. None of the landscape metrics tested was important for diurnal forest birds. We conclude that no single landscape metric adequately captures the response of the region's forest biota per se. This poses a major challenge to regional reporting of Montreal Process Indicator 1.1e, fragmentation of forest types.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Using a social identity perspective, two experiments examined the effects of power and the legitimacy of power differentials on intergroup bias. In Experiment 1, 125 math-science students were led to believe that they had high or low representation in a university decision-making body relative to social-science students and that this power position was either legitimate or illegitimate. Power did not have an independent effect on bias; rather, members of both high and low power groups showed more bias when the power hierarchy was illegitimate than when it was legitimate. This effect was replicated in Experiment 2 (N =105). In addition, Experiment 2 showed that groups located within an unfair power hierarchy expected the superordinate power body to be more discriminatory than did those who had legitimately high or low power. The results are discussed in terms of their implications for group relations.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.
Resumo:
Frequency deviation is a common problem for power system signal processing. Many power system measurements are carried out in a fixed sampling rate assuming the system operates in its nominal frequency (50 or 60 Hz). However, the actual frequency may deviate from the normal value from time to time due to various reasons such as disturbances and subsequent system transients. Measurement of signals based on a fixed sampling rate may introduce errors under such situations. In order to achieve high precision signal measurement appropriate algorithms need to be employed to reduce the impact from frequency deviation in the power system data acquisition process. This paper proposes an advanced algorithm to enhance Fourier transform for power system signal processing. The algorithm is able to effectively correct frequency deviation under fixed sampling rate. Accurate measurement of power system signals is essential for the secure and reliable operation of power systems. The algorithm is readily applicable to such occasions where signal processing is affected by frequency deviation. Both mathematical proof and numerical simulation are given in this paper to illustrate robustness and effectiveness of the proposed algorithm. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.