948 resultados para Teleonomic Entropy
Resumo:
Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA << PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid \[M - H](-) anions. (c) 2005 American Society for Mass Spectrometry.
Resumo:
We introduce the notion of distributed password-based public-key cryptography, where a virtual high-entropy private key is implicitly defined as a concatenation of low-entropy passwords held in separate locations. The users can jointly perform private-key operations by exchanging messages over an arbitrary channel, based on their respective passwords, without ever sharing their passwords or reconstituting the key. Focusing on the case of ElGamal encryption as an example, we start by formally defining ideal functionalities for distributed public-key generation and virtual private-key computation in the UC model. We then construct efficient protocols that securely realize them in either the RO model (for efficiency) or the CRS model (for elegance). We conclude by showing that our distributed protocols generalize to a broad class of “discrete-log”-based public-key cryptosystems, which notably includes identity-based encryption. This opens the door to a powerful extension of IBE with a virtual PKG made of a group of people, each one memorizing a small portion of the master key.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
In this paper, we propose a steganalysis method that is able to identify the locations of stego bearing pixels in the binary image. In order to do that, our proposed method will calculate the residual between a given stego image and its estimated cover image. After that, we will compute the local entropy difference between these two versions of images as well. Finally, we will compute the mean of residual and mean of local entropy difference across multiple stego images. From these two means, the locations of stego bearing pixels can be identified. The presented empirical results demonstrate that our proposed method can identify the stego bearing locations of near perfect accuracy when sufficient stego images are supplied. Hence, our proposed method can be used to reveal which pixels in the binary image have been used to carry the secret message.
Resumo:
Although urbanization can promote social and economic development, it can also cause various problems. As the key decision makers of urbanization, local governments should be able to evaluate urbanization performance, summarize experiences, and find problems caused by urbanization. This paper introduces a hybrid Entropy–McKinsey Matrix method for evaluating sustainable urbanization. The McKinsey Matrix is commonly referred to as the GE Matrix. The values of a development index (DI) and coordination index (CI) are calculated by employing the Entropy method and are used as a basis for constructing a GE Matrix. The matrix can assist in assessing sustainable urbanization performance by locating the urbanization state point. A case study of the city of Jinan in China demonstrates the process of using the evaluation method. The case study reveals that the method is an effective tool in helping policy makers understand the performance of urban sustainability and therefore formulate suitable strategies for guiding urbanization toward better sustainability.
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
Rapid development of plug-in hybrid electric vehicles (PHEVs) brings new challenges and opportunities to the power industry. A large number of idle PHEVs can potentially be employed to form a distributed energy storage system for supporting renewable generation. To reduce the negative effects of unsteady renewable generation outputs, a stochastic optimization-based dispatch model capable of handling uncertain outputs of PHEVs and renewable generation is formulated in this paper. The mathematical expectations, second-order original moments, and variances of wind and photovoltaic (PV) generation outputs are derived analytically. Incorporated all the derived uncertainties, a novel generation shifting objective is proposed. The cross-entropy (CE) method is employed to solve this optimal dispatch model. Multiple patterns of renewable generation depending on seasons and renewable market shares are investigated. The feasibility and efficiency of the developed optimal dispatch model, as well as the CE method, are demonstrated with a 33-node distribution system.
Resumo:
Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.