890 resultados para Tchebyshev metrics
Resumo:
The safe and responsible development of engineered nanomaterials (ENM), nanotechnology-based materials and products, together with the definition of regulatory measures and implementation of "nano"-legislation in Europe require a widely supported scientific basis and sufficient high quality data upon which to base decisions. At the very core of such a scientific basis is a general agreement on key issues related to risk assessment of ENMs which encompass the key parameters to characterise ENMs, appropriate methods of analysis and best approach to express the effect of ENMs in widely accepted dose response toxicity tests. The following major conclusions were drawn: Due to high batch variability of ENMs characteristics of commercially available and to a lesser degree laboratory made ENMs it is not possible to make general statements regarding the toxicity resulting from exposure to ENMs. 1) Concomitant with using the OECD priority list of ENMs, other criteria for selection of ENMs like relevance for mechanistic (scientific) studies or risk assessment-based studies, widespread availability (and thus high expected volumes of use) or consumer concern (route of consumer exposure depending on application) could be helpful. The OECD priority list is focussing on validity of OECD tests. Therefore source material will be first in scope for testing. However for risk assessment it is much more relevant to have toxicity data from material as present in products/matrices to which men and environment are be exposed. 2) For most, if not all characteristics of ENMs, standardized methods analytical methods, though not necessarily validated, are available. Generally these methods are only able to determine one single characteristic and some of them can be rather expensive. Practically, it is currently not feasible to fully characterise ENMs. Many techniques that are available to measure the same nanomaterial characteristic produce contrasting results (e.g. reported sizes of ENMs). It was recommended that at least two complementary techniques should be employed to determine a metric of ENMs. The first great challenge is to prioritise metrics which are relevant in the assessment of biological dose response relations and to develop analytical methods for characterising ENMs in biological matrices. It was generally agreed that one metric is not sufficient to describe fully ENMs. 3) Characterisation of ENMs in biological matrices starts with sample preparation. It was concluded that there currently is no standard approach/protocol for sample preparation to control agglomeration/aggregation and (re)dispersion. It was recommended harmonization should be initiated and that exchange of protocols should take place. The precise methods used to disperse ENMs should be specifically, yet succinctly described within the experimental section of a publication. 4) ENMs need to be characterised in the matrix as it is presented to the test system (in vitro/ in vivo). 5) Alternative approaches (e.g. biological or in silico systems) for the characterisation of ENMS are simply not possible with the current knowledge. Contributors: Iseult Lynch, Hans Marvin, Kenneth Dawson, Markus Berges, Diane Braguer, Hugh J. Byrne, Alan Casey, Gordon Chambers, Martin Clift, Giuliano Elia1, Teresa F. Fernandes, Lise Fjellsbø, Peter Hatto, Lucienne Juillerat, Christoph Klein, Wolfgang Kreyling, Carmen Nickel1, and Vicki Stone.
Resumo:
Summary: The metrics of Larin Paraske's epic folk poetry in the Kalevala metre
Resumo:
False identity documents constitute a potential powerful source of forensic intelligence because they are essential elements of transnational crime and provide cover for organized crime. In previous work, a systematic profiling method using false documents' visual features has been built within a forensic intelligence model. In the current study, the comparison process and metrics lying at the heart of this profiling method are described and evaluated. This evaluation takes advantage of 347 false identity documents of four different types seized in two countries whose sources were known to be common or different (following police investigations and dismantling of counterfeit factories). Intra-source and inter-sources variations were evaluated through the computation of more than 7500 similarity scores. The profiling method could thus be validated and its performance assessed using two complementary approaches to measuring type I and type II error rates: a binary classification and the computation of likelihood ratios. Very low error rates were measured across the four document types, demonstrating the validity and robustness of the method to link documents to a common source or to differentiate them. These results pave the way for an operational implementation of a systematic profiling process integrated in a developed forensic intelligence model.
Resumo:
The objective of this study is to systematically evaluate the Iowa Department of Transportation’s (DOT’s) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Design Guide (MEPDG) rehabilitation analysis and design. To accomplish this objective, all of available PMIS data for interstate and primary roads in Iowa were retrieved from the Iowa DOT PMIS. The retrieved data were evaluated with respect to the input requirements and outputs for the latest version of the MEPDG software (version 1.0). The input parameters that are required for MEPDG HMA rehabilitation design, but currently unavailable in the Iowa DOT PMIS were identified. The differences in the specific measurement metrics used and their units for some of the pavement performance measures between the Iowa DOT PMIS and MEPDG were identified and discussed. Based on the results of this study, it is recommended that the Iowa DOT PMIS should be updated, if possible, to include the identified parameters that are currently unavailable, but are required for MEPDG rehabilitation design. Similarly, the measurement units of distress survey results in the Iowa DOT PMIS should be revised to correspond to those of MEPDG performance predictions. *******************Large File**************************
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.
Resumo:
Abstract. The ability of 2 Rapid Bioassessment Protocols (RBPs) to assess stream water quality was compared in 2 Mediterranean-climate regions. The most commonly used RBPs in South Africa (SAprotocol) and the Iberian Peninsula (IB-protocol) are both multihabitat, field-based methods that use macroinvertebrates. Both methods use preassigned sensitivity weightings to calculate metrics and biotic indices. The SA- and IB-protocols differ with respect to sampling equipment (mesh size: 1000 lm vs 250 300 lm, respectively), segregation of habitats (substrate vs flow-type), and sampling and sorting procedures (variable time and intensity). Sampling was undertaken at 6 sites in South Africa and 5 sites in the Iberian Peninsula. Forty-four and 51 macroinvertebrate families were recorded in South Africa and the Iberian Peninsula, respectively; 77.3% of South African families and 74.5% of Iberian Peninsula families were found using both protocols. Estimates of community similarity compared between the 2 protocols were .60% similar among sites in South Africa and .54% similar among sites in the Iberian Peninsula (BrayCurtis similarity), and no significant differences were found between protocols (Multiresponse Permutation Procedure). Ordination based on Non-metric Multidimensional Scaling grouped macroinvertebrate samples on the basis of site rather than protocol. Biotic indices generated with the 2 protocols at each site did not differ. Thus, both RBPs produced equivalent results, and both were able to distinguish between biotic communities (mountain streams vs foothills) and detect water-quality impairment, regardless of differences in sampling equipment, segregation of habitats, and sampling and sorting procedures. Our results indicate that sampling a single habitat may be sufficient for assessing water quality, but a multihabitat approach to sampling is recommended where intrinsic variability of macroinvertebrate assemblages is high (e.g., in undisturbed sites in regions with Mediterranean climates). The RBP of choice should depend on whether the objective is routine biomonitoring of water quality or autecological or faunistic studies.
Resumo:
The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.
Resumo:
In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.
Resumo:
Purpose: Although several approaches have been already used to reduce radiation dose, CT doses are still among the high doses in radio-diagnostic. Recently, General Electric introduced a new imaging reconstruction technique, adaptive statistical iterative reconstruction (ASIR), allows to taking into account the statistical fluctuation of noise. The benefits of ASIR method were assessed through classic metrics and the evaluations of cardiac structures by radiologists. Methods and materials: A 64-row CT (MDCT) was employed. Catphan600 phantom acquisitions and 10 routine-dose CT examinations performed at 80 kVp were reconstructed with FBP and with 50% of ASIR. Six radiologists then assessed the visibility of main cardiac structures using the visual grading analysis (VGA) method. Results: On phantoms, for a constant value of SD (25 HU), CTDIvol is divided by 2 (8 mGy to 4 mGy) when 50% of ASIR is used. At constant CTDIvol, MTF medium frequencies were also significantly improved. First results indicated that clinical images reconstructed with ASIR had a better overall image quality compared with conventional reconstruction. This means that at constant image quality the radiation dose can be strongly reduced. Conclusion: The first results of this study shown that the ASIR method improves the image quality on phantoms by decreasing noise and improving resolution with respect to the classical one. Moreover, the benefit obtained is higher at lower doses. In clinical environment, a dose reduction can still be expected on 80 kVp low dose pediatric protocols using 50% of iterative reconstruction. Best ASIR percentage as a function of cardiac structures and detailed protocols will be presented for cardiac examinations.
Resumo:
ABSTRACT: BACKGROUND: The ongoing increase in life expectancy in developed countries is associated with changes in the shape of the survival curve. These changes can be characterized by two main, distinct components: (i) the decline in premature mortality, i.e., the concentration of deaths around some high value of the mean age at death, also termed rectangularization of the survival curve; and (ii) the increase of this mean age at death, i.e., longevity, which directly reflects the reduction of mortality at advanced ages. Several recent observations suggest that both mechanisms are simultaneously taking place. METHODS: We propose a set of indicators aiming to quantify, disentangle, and compare the respective contribution of rectangularization and longevity increase to the secular increase of life expectancy. These indicators, based on a nonparametric approach, are easy to implement. RESULTS: We illustrate the method with the evolution of the Swiss mortality data between 1876 and 2006. Using our approach, we are able to say that the increase in longevity and rectangularization explain each about 50% of the secular increase of life expectancy. CONCLUSION: Our method may provide a useful tool to assess whether the contribution of rectangularization to the secular increase of life expectancy will remain around 50% or whether it will be increasing in the next few years, and thus whether concentration of mortality will eventually take place against some ultimate biological limit.
Resumo:
Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.
Resumo:
Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter-weather maintenance practices on safety and mobility are somewhat difficult to quantify. Safety and Mobility Impacts of Winter Weather - Phase 1 investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter-weather conditions. In Phase 2, three Iowa Department of Transportation (DOT) high-priority sites were evaluated and realistic maintenance and operations mitigation strategies were also identified. In this project, site prioritization techniques for identifying roadway segments with the potential for safety improvements related to winter-weather crashes, were developed through traditional naïve statistical methods by using raw crash data for seven winter seasons and previously developed metrics. Additionally, crash frequency models were developed using integrated crash data for four winter seasons, with the objective of identifying factors that affect crash frequency during winter seasons and screening roadway segments using the empirical Bayes technique. Based on these prioritization techniques, 11 sites were identified and analyzed in conjunction with input from Iowa DOT district maintenance managers and snowplow operators and the Iowa DOT Road Weather Information System (RWIS) coordinator.
Resumo:
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the portable concrete barrier system. The focus of this research study was to develop a proper stiffness transition between W-beam guardrail and portable concrete barrier systems. This research effort was accomplished through development and refinement of design concepts using computer simulation with LS-DYNA. Several design concepts were simulated, and design metrics were used to evaluate and refine each concept. These concepts were then analyzed and ranked based on feasibility, likelihood of success, and ease of installation. The rankings were presented to the Technical Advisory Committee (TAC) for selection of a preferred design alternative. Next, a Critical Impact Point (CIP) study was conducted, while additional analyses were performed to determine the critical attachment location and a reduced installation length for the portable concrete barriers. Finally, an additional simulation effort was conducted in order to evaluate the safety performance of the transition system under reverse-direction impact scenarios as well as to select the CIP. Recommendations were also provided for conducting a Phase II study and evaluating the nested Midwest Guardrail System (MGS) configuration using three Test Level 3 (TL-3) full-scale crash tests according to the criteria provided in the Manual for Assessing Safety Hardware, as published by the American Association of Safety Highway and Transportation Officials (AASHTO).
Resumo:
Mixture proportioning is routinely a matter of using a recipe based on a previously produced concrete, rather than adjusting the proportions based on the needs of the mixture and the locally available materials. As budgets grow tighter and increasing attention is being paid to sustainability metrics, greater attention is beginning to be focused on making mixtures that are more efficient in their usage of materials yet do not compromise engineering performance. Therefore, a performance-based mixture proportioning method is needed to provide the desired concrete properties for a given project specification. The proposed method should be user friendly, easy to apply in practice, and flexible in terms of allowing a wide range of material selection. The objective of this study is to further develop an innovative performance-based mixture proportioning method by analyzing the relationships between the selected mix characteristics and their corresponding effects on tested properties. The proposed method will provide step-by-step instructions to guide the selection of required aggregate and paste systems based on the performance requirements. Although the provided guidance in this report is primarily for concrete pavements, the same approach can be applied to other concrete applications as well.