952 resultados para Task analysis
Resumo:
Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.
Resumo:
Jaccard has been the choice similarity metric in ecology and forensic psychology for comparison of sites or offences, by species or behaviour. This paper applies a more powerful hierarchical measure - taxonomic similarity (s), recently developed in marine ecology - to the task of behaviourally linking serial crime. Forensic case linkage attempts to identify behaviourally similar offences committed by the same unknown perpetrator (called linked offences). s considers progressively higher-level taxa, such that two sites show some similarity even without shared species. We apply this index by analysing 55 specific offence behaviours classified hierarchically. The behaviours are taken from 16 sexual offences by seven juveniles where each offender committed two or more offences. We demonstrate that both Jaccard and s show linked offences to be significantly more similar than unlinked offences. With up to 20% of the specific behaviours removed in simulations, s is equally or more effective at distinguishing linked offences than where Jaccard uses a full data set. Moreover, s retains significant difference between linked and unlinked pairs, with up to 50% of the specific behaviours removed. As police decision-making often depends upon incomplete data, s has clear advantages and its application may extend to other crime types. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.
Resumo:
Purpose - The purpose of this paper is to develop an integrated quality management model that identifies problems, suggests solutions, develops a framework for implementation and helps to evaluate dynamically healthcare service performance. Design/methodology/approach - This study used the logical framework analysis (LFA) to improve the performance of healthcare service processes. LFA has three major steps - problems identification, solution derivation, and formation of a planning matrix for implementation. LFA has been applied in a case-study environment to three acute healthcare services (Operating Room utilisation, Accident and Emergency, and Intensive Care) in order to demonstrate its effectiveness. Findings - The paper finds that LFA is an effective method of quality management of hospital-based healthcare services. Research limitations/implications - This study shows LFA application in three service processes in one hospital. This very limited population sample needs to be extended. Practical implications - The proposed model can be implemented in hospital-based healthcare services in order to improve performance. It may also be applied to other services. Originality/value - Quality improvement in healthcare services is a complex and multi-dimensional task. Although various quality management tools are routinely deployed for identifying quality issues in healthcare delivery, they are not without flaws. There is an absence of an integrated approach, which can identify and analyse issues, provide solutions to resolve those issues, develop a project management framework to implement those solutions. This study introduces an integrated and uniform quality management tool for healthcare services. © Emerald Group Publishing Limited.
Resumo:
Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.
Resumo:
Research into social facilitation effects reveals three factors affecting response performance: types of task, types of audience and type of actor. This study attempts to establish a minimal baseline for task and audience type in order to examine difference between personality types in the actors. Results indicate that performance in both extraverts and introverts increases in the minimal conditions of the mere presence of another person whilst carrying out a simple mathematical task. These results are interpreted through an analysis of Zajonc's (1965) drive theory with Eysenck's (1967) personality theory indicating that through further investigation performance curves might be devised for introverts and extraverts performing under a variety of task and audience conditions.
Resumo:
Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.
Resumo:
We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation
Resumo:
The thesis examines Kuhn's (1962, 1970) concept of paradigm, assesses how it is employed for mapping intellectual terrain in the social sciences, and evaluates it's use in research based on multiple theory positions. In so doing it rejects both the theses of total paradigm 'incommensurability' (Kuhn, 1962), and also of liberal 'translation' (Popper, 1970), in favour of a middle ground through the 'language-game of everyday life' (Wittgenstein, 1953). The thesis ultimately argues for the possibility of being 'trained-into' new paradigms, given the premise that 'unorganised experience cannot order perception' (Phillips, 1977). In conducting multiple paradigm research the analysis uses the Burrell and Morgan (1979) model for examining the work organisation of a large provincial fire Service. This analysis accounts for firstly, a 'functionalist' assessment of work design, demonstrating inter alia the decrease in reported motivation with length of service; secondly, an 'interpretive' portrayal of the daily accomplishment of task routines, highlighting the discretionary and negotiated nature of the day's events; thirdly, a 'radical humanist' analysis of workplace ideology, demonstrating the hegemonic role of officer training practices; and finally, a 'radical structuralist' description of the labour process, focusing on the establishment of a 'normal working day'. Although the argument is made for the possibility of conducting multiple paradigm research, the conclusion stresses the many institutional pressures serving to offset development.
Resumo:
Task classification is introduced as a method for the evaluation of monitoring behaviour in different task situations. On the basis of an analysis of different monitoring tasks, a task classification system comprising four task 'dimensions' is proposed. The perceptual speed and flexibility of closure categories, which are identified with signal discrimination type, comprise the principal dimension in this taxonomy, the others being sense modality, the time course of events, and source complexity. It is also proposed that decision theory provides the most complete method for the analysis of performance in monitoring tasks. Several different aspects of decision theory in relation to monitoring behaviour are described. A method is also outlined whereby both accuracy and latency measures of performance may be analysed within the same decision theory framework. Eight experiments and an organizational study are reported. The results show that a distinction can be made between the perceptual efficiency (sensitivity) of a monitor and his criterial level of response, and that in most monitoring situations, there is no decrement in efficiency over the work period, but an increase in the strictness of the response criterion. The range of tasks exhibiting either or both of these performance trends can be specified within the task classification system. In particular, it is shown that a sensitivity decrement is only obtained for 'speed' tasks with a high stimulation rate. A distinctive feature of 'speed' tasks is that target detection requires the discrimination of a change in a stimulus relative to preceding stimuli, whereas in 'closure' tasks, the information required for the discrimination of targets is presented at the same point In time. In the final study, the specification of tasks yielding sensitivity decrements is shown to be consistent with a task classification analysis of the monitoring literature. It is also demonstrated that the signal type dimension has a major influence on the consistency of individual differences in performance in different tasks. The results provide an empirical validation for the 'speed' and 'closure' categories, and suggest that individual differences are not completely task specific but are dependent on the demands common to different tasks. Task classification is therefore shovn to enable improved generalizations to be made of the factors affecting 1) performance trends over time, and 2) the consistencv of performance in different tasks. A decision theory analysis of response latencies is shown to support the view that criterion shifts are obtained in some tasks, while sensitivity shifts are obtained in others. The results of a psychophysiological study also suggest that evoked potential latency measures may provide temporal correlates of criterion shifts in monitoring tasks. Among other results, the finding that the latencies of negative responses do not increase over time is taken to invalidate arousal-based theories of performance trends over a work period. An interpretation in terms of expectancy, however, provides a more reliable explanation of criterion shifts. Although the mechanisms underlying the sensitivity decrement are not completely clear, the results rule out 'unitary' theories such as observing response and coupling theory. It is suggested that an interpretation in terms of the memory data limitations on information processing provides the most parsimonious explanation of all the results in the literature relating to sensitivity decrement. Task classification therefore enables the refinement and selection of theories of monitoring behaviour in terms of their reliability in generalizing predictions to a wide range of tasks. It is thus concluded that task classification and decision theory provide a reliable basis for the assessment and analysis of monitoring behaviour in different task situations.
Resumo:
This thesis describes work undertaken in order to fulfil a need experienced in the Department of Educational Enquiry at the University of Aston in Birmingham for speech analysis facilities suitable for use in teaching and research work within the Department. The hardware and software developed during the research project provides displays of speech fundamental frequency and intensity in real time. The system is suitable for the provision of visual feedback of these parameters of a subject's speech in a learning situation, and overcomes the inadequacies of equipment currently used for this task in that it provides a clear indication of fundamental frequency contours as the subject is speaking. The thesis considers the use of such equipment in several related fields, and the approaches that have been reported to one of the major problems of speech analysis, namely pitch-period estimation. A number of different systems are described, and their suitability for the present purposes is discussed. Finally, a novel method of pitch-period estimation is developed, and a speech analysis system incorporating this method is described. Comparison is made between the results produced by this system and those produced by a conventional speech spectrograph.
Resumo:
Objective: To determine the efficacy of cholinesterase inhibitors (ChEIs) in improving the behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer’s disease (AD). Data sources: We searched MEDLINE, Cochrane Registry, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) from 1966 to 2007. We limited our search to English Language, full text, published articles and human studies. Data extraction: We included randomized, double-blind, placebo-controlled trials evaluating the efficacy of donepezil, rivastigmine, or galantamine in managing BPSD displayed by AD patients. Using the United States Preventive Services Task Force (USPSTF) guidelines, we critically appraised all studies and included only those with an attrition rate of less than 40%, concealed measurement of the outcomes, and intention to treat analysis of the collected data. All data were imputed into pre-defined evidence based tables and were pooled using the Review Manager 4.2.1 software for data synthesis. Results: We found 12 studies that met our inclusion criteria but only nine of them provided sufficient data for the meta-analysis. Among patients with mild to severe AD and in comparison to placebo, ChEIs as a class had a beneficial effects on reducing BPSD with a standard mean difference (SMD) of -0.10 (95% confidence interval [CI]; -0.18, -0.01) and a weighted mean difference (WMD) of -1.38 neuropsychiatry inventory point (95% CI; -2.30, -0.46). In studies with mild AD patients, the WMD was -1.92 (95% CI; -3.18, -0.66); and in studies with severe AD patients, the WMD was -0.06 (95% CI; -2.12, +0.57). Conclusion: Cholinesterase inhibitors lead to a statistical significant reduction in BPSD among patients with AD, yet the clinical relevance of this effect remains unclear.
Resumo:
We introduce a type of 2-tier convolutional neural network model for learning distributed paragraph representations for a special task (e.g. paragraph or short document level sentiment analysis and text topic categorization). We decompose the paragraph semantics into 3 cascaded constitutes: word representation, sentence composition and document composition. Specifically, we learn distributed word representations by a continuous bag-of-words model from a large unstructured text corpus. Then, using these word representations as pre-trained vectors, distributed task specific sentence representations are learned from a sentence level corpus with task-specific labels by the first tier of our model. Using these sentence representations as distributed paragraph representation vectors, distributed paragraph representations are learned from a paragraph-level corpus by the second tier of our model. It is evaluated on DBpedia ontology classification dataset and Amazon review dataset. Empirical results show the effectiveness of our proposed learning model for generating distributed paragraph representations.
Resumo:
Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
Resumo:
Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-based approaches require expensive manual annotation effort. In this paper, we propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon with preferences on expectations of sentiment labels of those lexicon words being expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie-review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than existing weakly-supervised sentiment classification methods despite using no labeled documents.