867 resultados para Tamar Valley


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buried snowpack deposits are found within the McMurdo Dry Valleys of Antarctica, which offers the opportunity to study these layered structures of sand and ice within a polar desert environment. Four discrete buried snowpacks are studied within Pearse Valley, Antarctica, through in situ observations, sample analyses, O-H isotope measurements and numerical modelling of snowpack stability and evolution. The buried snowpack deposits evolve throughout the year and undergo deposition, melt, refreeze, and sublimation. We demonstrate how the deposition and subsequent burial of snow can preserve the snowpacks in the Dry Valleys. The modelled lifetimes of the buried snowpacks are dependent upon subsurface stratigraphy but are typically less than one year if the lag thickness is less than c. 7 cm and snow thickness is less than c. 10 cm, indicating that some of the Antarctic buried snowpacks form annually. Buried snowpacks in the Antarctic polar desert may serve as analogues for similar deposits on Mars and may be applicable to observations of the north polar erg, buried ice at the Mars Phoenix landing site, and observations of buried ice throughout the martian Arctic. Numerical modelling suggests that seasonal snows and subsequent burial are not required to preserve the snow and ice on Mars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground penetrating radar (GPR) and capacitive coupled resistivity (CCR) measurements were conducted in order to image subsurface structures in the Orkhon Valley, Central Mongolia. The data are extended by information from drill cores to the entire transects distinguishing different sedimentary environments in the valley. The Orkhon Valley is part of the high sensitive Steppe region in Central Mongolia, one of the most important cultural landscapes in Central Asia. There, archaeological, geoarchaeological and sedimentological research aims to reconstruct the landscape evolution and the interaction between man and environment during the last millennia since the first settlement. In May 2009 and 2010 geophysical surveys have been conducted including transects with lengths between 1.5 and 30 km crossing the entire valley and a kilometre-scaled grid in the southern part of the investigation area. The geoelectrical and GPR data revealed the existence of two layers characterized by different resistivity values and radar reflectors. The two layers do not only represent material contrasts, but also reflect the influence of sporadic permafrost which occurs in several areas of Mongolia. The results help to reconstruct the evolution of the braided Orkhon River and therefore give important hints to understand the environmental history of the Orkhon Valley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleosols crop out in the Sukhona River valley as several members up to 10 m thick embedded into the Salarevo Formation sediments. Principal characteristics of the paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). The paleosols formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments existed in the northern semiarid belt of the Earth before the greatest (in Phanerozoic) biospheric crisis at the Permian-Triassic boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data presented in the paper suggest significant differences between thermodynamic conditions, under which magmatic complexes were formed in MAR at 29°-34°N and 12°-18°N. Melts occurring at 29°-34°N were derived by melting of a mantle source with homogeneous distribution of volatile components and arrived at the surface without significant fractionation, likely, due to their rapid ascent. The MAR segments between 12° and 18°N combine contrasting geodynamic environments of magmatism, which predetermined development of a large plume region with widespread mixing of melting products of geochemically distinct mantle sources. At the same time, this region is characterized by conditions favorable for origin of localized zones of anomalous plume magmatism. These sporadic magmatic sources were spatially restricted to MAR fragments with the Hess crust, whose compositional and mechanical properties were, perhaps, favorable for focusing and localization of plume magmatism. The plume source between 12° and 18°N beneath MAR may be geochemically heterogeneous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was found out that the lower parts of slopes of the Untersee mountain valley (East Antarctica) were locally covered with lithificates (both carbonate-free and carbonate-poor). They occur in three modes: crusts, films, and impregnates. All of them cover Late Pleistocene moraine material and consist of mixture of lacustrine sedimentary material and filling material of moraines. A mechanism of their genesis is offered.

Relevância:

20.00% 20.00%

Publicador: