966 resultados para Tagged Mri
Resumo:
OBJECTIVE: To evaluate a comprehensive MRI protocol that investigates for cancer, vascular disease, and degenerative/inflammatory disease from the head to the pelvis in less than 40 minutes on a new generation 48-channel 3T system. MATERIALS AND METHODS: All MR studies were performed on a 48-channel 3T MR scanner. A 20-channel head/neck coil, two 18-channel body arrays, and a 32-channel spine array were employed. A total of 4 healthy individuals were studied. The designed protocol included a combination of single-shot T2-weighted sequences, T1-weighted 3D gradient-echo pre- and post-gadolinium. All images were retrospectively evaluated by two radiologists independently for overall image quality. RESULTS: The image quality for cancer was rated as excellent in the liver, pancreas, kidneys, lungs, pelvic organs, and brain, and rated as fair in the colon and breast. For vascular diseases ratings were excellent in the aorta, major branch vessel origins, inferior vena cava, portal and hepatic veins, rated as good in pulmonary arteries, and as poor in the coronary arteries. For degenerative/inflammatory diseases ratings were excellent in the brain, liver and pancreas. The inter-observer agreement was excellent. CONCLUSION: A comprehensive and time efficient screening for important categories of disease processes may be achieved with high quality imaging in a new generation 48-channel 3T system.
Resumo:
The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.
Resumo:
We report the synthesis and application of some ion-tagged catalysts in organometallic catalysis and organocatalysis. With the installation of an ionic group on the backbone of a known catalyst, two main effects are generally obtained. i) a modification of the solubility of the catalyst: if judicious choice of the ion pair is made, the ion-tag can confer to the catalyst a solubility profile suitable for catalyst recycling. ii) the ionic group can play a non-innocent role in the process considered: if stabilizing interaction between the ionic group and the developing charges in the transition state are established, the reaction can speed up. We describe the use of ion-tagged diphenylprolinol as Zn ligand. The chiral ligand grafted onto an ionic liquid (IL) was recycled 10 times with no loss of reactivity and selectivity, when it was employed in the first example of enantioselective addition of ZnEt2 to aldehydes in ILs. An ammonium-tagged phosphine displayed the capability to stabilize Pd catalysts for the Suzuki reaction in ILs. The ionic phase was recycled 6 times with no detectable loss of activity and very low Pd leaching in the organic phase. This catalytic system was also employed for the functionalization of the challenging substrate 5,11-dibromotetracene. In the field of organocatalysis, we prepared two ion-tagged derivatives of the McMillan imidazolidinone. The results of the asymmetric Diels-Alder reaction between trans-cinnamaldehyde and cyclopentadiene exhibited great dependence on the position and nature of the ionic group. Finally, when O-TMS-diphenylprolinol was tagged with an imidazolium ion, exploiting a silyl ether linker, an efficient catalyst for the asymmetric addition of aldehydes to nitroolefins was achieved. The catalyst displayed enhanced reactivity and the same high level of selectivity of the untagged parent catalyst and it could be employed in a wide range of reaction conditions, included use of water as solvent.
Resumo:
The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Parahydrogen induced polarization on a clinical MRI system : polarization transfer of two spin order
Resumo:
Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.
Resumo:
Il presente lavoro di tesi si inserisce all'interno di uno studio dal titolo: "Strategia di posizionamento multi-step come approccio pragmatico per ridurre il rischio di encefalopatia epatica post-TIPS (shunt trans-giugulare porto-sistemico intraepatico) in pazienti cirrotici con ascite refrattaria". Il progetto di tesi si è concentrato sull'analisi dei segnali ottenuti tramite DCE MRI, con lo scopo di implementare in ambiente MatLab due modelli differenti (Dual input - Mono compartment e Dual input - Dual compartment) che descrivono la cinetica del tracciante all'interno del sistema vascolare epatico e valutare l'efficacia dei parametri di perfusione associati nella descrizione delle variazioni in termini di microcircolazione introdotte dall'inserimento del TIPS. Inizialmente si sono voluti valutare, tramite simulazione, gli effetti in termini di amplificazione del rumore e stima dei parametri perfusionali dell'approssimazione lineare nella conversione da intensità di segnale MR a concentrazione di mezzo di contrasto. Successivamente, sempre attraverso simulazioni, per entrambi i modelli considerati è stato scelto uno schema di model-fitting e quindi testata l'affidabilità in termini di accuratezza e precisione delle stime dei parametri ottenute in funzione del livello di rumore associato alle curve di intensità di segnale. Parallelamente all'implementazione dei modelli per la stima di parametri di perfusione, sono stati realizzati dei phantom con l'obiettivo di simulare il parenchima epatico prima e dopo l'arrivo del mezzo di contrasto e poter testare la sequenza utilizzata durante l'acquisizione dei dati su paziente. Infine sono stati considerati gli esami di DCE MRI effettuati su un campione di nove pazienti pre e post-TIPS, utilizzando per l'analisi dei segnali entrambi i modelli implementati in fase di simulazione e successivamente valutando le variazioni nel valori associati ai parametri di perfusione introdotte dall'inserimento del TIPS.
Resumo:
La geometria frattale descrive la complessità strutturale di oggetti che presentano, entro certi limiti, invarianza a fattori di scala. Obiettivo di questa tesi è l’analisi di indici frattali della morfologia cerebrale e cerebellare da immagini di risonanza magnetica (MRI) pesate T1 e della loro correlazione con l’età. A tale scopo sono state analizzate la dimensione frattale (D0) e la lacunarità (λs), indice di eterogeneità strutturale, della sostanza grigia (GM) e bianca (WM), calcolate mediante algoritmi di box counting e di differential gliding box, implementati in linguaggio C++, e regressione lineare con scelta automatica delle scale spaziali. Gli algoritmi sono stati validati su fantocci 3D ed è stato proposto un metodo per compensare la dipendenza di λs dalle dimensioni dell’immagine e dalla frazione di immagine occupata. L’analisi frattale è stata applicata ad immagini T1 a 3T del dataset ICBM (International Consortium for Brain Mapping) composto da 86 soggetti (età 19-85 anni). D0 e λs sono state rispettivamente 2.35±0.02 (media±deviazione standard) e 0.41±0.05 per la GM corticale, 2.34±0.03 e 0.35±0.05 per la WM cerebrale, 2.19±0.05 e 0.17±0.02 per la GM cerebellare, 1.95±0.06 e 0.30±0.04 per la WM cerebellare. Il coefficiente di correlazione lineare tra età e D0 della GM corticale è r=−0.38 (p=0.003); tra età e λs, r=0.72 (p<0.001) (mostrando che l’eterogeneità strutturale aumenta con l’invecchiamento) e tra età e λs compensata rispetto al volume della GM cerebrale (GMV), r=0.51 (p<0.001), superiore in valore assoluto a quello tra età e GMV (r=−0.45, p<0.001). In un modello di regressione lineare multipla, dove l’età è stata modellata da D0, λ e GMV della GM corticale, λs è risultato l’unico predittore significativo (r parziale=0.62, p<0.001). La lacunarità λs è un indice sensibile alle variazioni strutturali dovute all’invecchiamento cerebrale e si candida come biomarcatore nella valutazione della complessità cerebrale nelle malattie neurodegenerative.
Resumo:
PURPOSE: To identify MRI characteristics that may predict the functional effect of selective dorsal rhizotomy (SDR) in children with bilateral spastic paresis. METHODS: We performed SDR in a group of 36 patients. The gross motor functioning measure-66 (GMFM-66) was applied before and after SDR. Available cerebral MRIs were retrospectively classified into three diagnostic groups: periventricular leucomalacia (PVL; n = 10), hydrocephalus (n = 2), and normal (n = 6). In patients with PVL, we scored the severity of the MR abnormalities. We compared the changes in the GMFM-66 after SDR in the diagnostic groups. In patients with PVL, we correlated the severity of the MR abnormalities with the changes in the GMFM-66. RESULTS: The mean follow-up period was 5 years and 4 months (range, 1 year and 1 month to 9 years). The best improvement in gross motor function was observed in patients with normal MRI, and the slightest improvement was observed in patients with hydrocephalus. The severity of the PVL did correlate with the GMFM-66 score before SDR but not with the functional effect of SDR. CONCLUSION: We conclude that with respect to gross motor skills, the improvements after SDR are good in patients with no MRI abnormalities. In the patients with hydrocephalus, the improvements after SDR were insignificant. In patients with PVL, the improvements were intermediate and did not correlate with the degree of PVL.
Resumo:
An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
Osteoarthritis of the hip joint is caused by a combination of intrinsic factors and extrinsic factors. Different surgical techniques are being performed to delay or halt osteoarthritis. Success of salvage procedures of the hip depends on the existing cartilage and joint damage before surgery; the likelihood of therapy failure rises with advanced osteoarthritis. For imaging of intra-articular hip pathology, MR imaging represents the best technique because of its ability to directly visualize cartilage, superior soft tissue contrast, and the prospect of multidimensional imaging. This article gives an overview on the standard MR imaging techniques used for diagnosis of hip osteoarthritis and their implications for surgery.
Resumo:
To evaluate the feasibility of molecular cartilage MRI in finger joints.
Resumo:
To assess rotation deficits, asphericity of the femoral head and localisation of cartilage damage in the follow-up after slipped capital femoral epiphysis (SCFE).
Resumo:
To use T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, and to compare and correlate both methodologies.