981 resultados para TRACE CONCENTRATIONS
Resumo:
A new electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters is presented. This methodology consists of three steps: (i) an estimation of the complex diffusion coefficient (DML), (ii) determination at low pH of the total metal concentration initially present in the sample, (iii) a metal titration at the desired pH. The free and bound metal concentrations are determined for each point of the titration and modeled with the non-ideal competitive adsorption (NICA-Donnan) model in order to obtain the binding parameters. In this methodology, it is recommended to determine the hydrodynamic transport parameter, α, for each set of hydrodynamic conditions used in the voltammetric measurements. The methodology was tested using two fractions of natural organic matter (NOM) isolated from the Loire river, namely the hydrophobic organic matter (HPO) and the transphilic organic matter (TPI), and a well characterized fulvic acid (Laurentian fulvic acid, LFA). The complex diffusion coefficients obtained at pH 5 were 0.4 ± 0.2 for Pb and Cu/HPO, 1.8 ± 0.2 for Pb/TPI and (0.612 ± 0.009) × 10−10 m2 s−1 for Pb/LFA. NICA-Donnan parameters for lead binding were obtained for the HPO and TPI fractions. The new lead/LFA results were successfully predicted using parameters derived in our previous work.
Resumo:
The present study has been initiated to unravel the distribution of trace metals and its geochemical behavior in the Indian EEZ of the Arabian Sea and Bay of Bengal. Trace metal accumulation in aquatic consumers is of interest to ecologists and environmentalists so as to understand the fate and effect of contaminants in the food web dynamics and the biogeochemical cycling of trace metals. It is well established that oceanic distribution of macronutrients such as nitrate, phosphate and silicate provide critical to biological growth and related geochemical processes. In this study it can be inferred, that there is a need for a better understanding of background informations on trace metal concentrations with respect to space and time and their fluctuations in the Arabian Sea and Bay of Bengal zooplankton. Without a sound knowledge on spatio-temporal fluctuations, it will be impossible to differentiate anthropogenic metal inputs from natural background concentrations with a routine biomonitoring programme. Fe, Cu, Zn, Cd & Pb showed a slight enrichment in zooplankton from the Arabian Sea during spring intermonsoon compared to intermonsoon fall. The relative enrichment of Fe, Cu & Zn in zooplankton from the Arabian Sea during intermonsoon spring than intermonsoon fall was due to favourable bioaccumulation factors of these elements during this season. Nevertheless this study can be looked upon as a starting point for further investigations on these biogeochemically important processes, which are vital in addressing the dynamics of productivity of waters.
Resumo:
A fibre optic technique for detecting trace amounts of nitrite compounds in water is described. The off-line fibre optic sensor outlined here is based on evanescent field absorption in a test solution formed by the reaction of nitrite compounds in water with suitable chemical reagents. A short unclad portion of a plastic clad silica fibre acts as the sensing region. The experimental results clearly establish the usefulness of the present technique for detecting very low concentrations of the order of 1 ppb (parts per billion) of nitrite compounds with a large dynamic range of 1–1000 ppb. Such a high sensitivity enables the present device to be used for measuring the nitrite content in drinking water.
Resumo:
The main objective of the study is primarily to determine the magnitude of selected trace elements, the concentrations of which would possibly accelerate growth resulting in larger biomass and sustained period of exponential phase for economically viable harvest. The study on the effect of three trace elements namely Cu, Mn and Zn on two species of algae,ISOChrySiS galbana Parke and Synechocystib salina Wislouch under different conditions of salinity, PH and temperature involves several combinations for each metal, from which the relative set of conditions has been adduced. The scheme of the experiments was statistically designed for interpretation of data and factors were assessed and graded according to relative importance. The methodology adopted for data interpretation is analysis of variance by split-plot design method. The thesis has been divided into five chapters. The introductory chapter explains the relevance of the research work undertaken. Chapter 11 gives a review on the work pertaining to the above mentioned three trace elements in relation to nutrition as well as on the toxic aspects about which there is an abundance of literature. Chapter Ill presents a detailed description of the material and specialised methods followed for the study. The results and conclusions of the various experiments on effect of metals on growth and other physiological activities are discussed in Chapters IV and V.
Resumo:
The subsequent chapters of the Thesis deal with the toxic effects of mercury, copper, zinc und~1ead on these bivalve molluecs, their accumulation and distribution among various organs of the animals and also the motel retention winstica by the three species. Static biousauy tests have been conducted in these studies. It was found that the concentrations of the various metals studied in these organism are well below the permitted level given far ease ahellfienes (crab and ehrimgi and that these maliuscs are very good integrators ef trace metals from their environment and may be used as an indicator organism sf metal pallutaute. The present investigutionsemphaeie the need for a clean coastal water and gives a serious warning regarding the possiblc route of heavy metals in ta human body thraugh marine food chain.
Resumo:
Present study consists the quantization of specific metals-- Cr, Cd, Pb, Zn and Cu observed in the experimental bivalve, Villorita species. Bivalve specimens were collected seasonally from the identified three hot spots of Vembanad Lake. Soft tissue concentrations of metals are very sensitive in reflecting changes in the ambient environment and hence important in assessing the environmental quality. Concentrations of Zn in bivalves were fairly high compared to other metals. All the stations showed a maximum concentration during premonsoon and minimum during the other two seasons. Levels of Pb, Cu, Zn, Cd and Cr are between 0-6.17mg/kg, 0-17.224mg/kg, 1.916-255.163mg/kg, 0.325-4.133mg/kg, and 0-15.233mg/kg respectively
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modem mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 kin from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 min circle divide at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (I mm 0) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Soil and Vitis vinifera L (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A first step in interpreting the wide variation in trace gas concentrations measured over time at a given site is to classify the data according to the prevailing weather conditions. In order to classify measurements made during two intensive field campaigns at Mace Head, on the west coast of Ireland, an objective method of assigning data to different weather types has been developed. Air-mass back trajectories calculated using winds from ECMWF analyses, arriving at the site in 1995–1997, were allocated to clusters based on a statistical analysis of the latitude, longitude and pressure of the trajectory at 12 h intervals over 5 days. The robustness of the analysis was assessed by using an ensemble of back trajectories calculated for four points around Mace Head. Separate analyses were made for each of the 3 years, and for four 3-month periods. The use of these clusters in classifying ground-based ozone measurements at Mace Head is described, including the need to exclude data which have been influenced by local perturbations to the regional flow pattern, for example, by sea breezes. Even with a limited data set, based on 2 months of intensive field measurements in 1996 and 1997, there are statistically significant differences in ozone concentrations in air from the different clusters. The limitations of this type of analysis for classification and interpretation of ground-based chemistry measurements are discussed.
Resumo:
We investigated the role of urban Holm Oak (Quercus ilex L.) trees as airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk ('stemflow area'). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.
Resumo:
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature-equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
Resumo:
Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl2–DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve a more realistic assessment of the risks linked to compost use.
Resumo:
The Emissions around the M25 motorway (EM25) campaign took place over the megacity of London in the United Kingdom in June 2009 with the aim of characterising trace gas and aerosol composition and properties entering and emitted from the urban region. It featured two mobile platforms, the UK BAe-146 Facility for Airborne Atmospheric Measurements (FAAM) research aircraft and a ground-based mobile lidar van, both travelling in circuits around London, roughly following the path of the M25 motorway circling the city. We present an overview of findings from the project, which took place during typical UK summertime pollution conditions. Emission ratios of volatile organic compounds (VOCs) to acetylene and carbon monoxide emitted from the London region were consistent with measurements in and downwind of other large urban areas and indicated traffic and associated fuel evaporation were major sources. Sub-micron aerosol composition was dominated by secondary species including sulphate (24% of sub-micron mass in the London plume and 29% in the non-plume regional aerosol), nitrate (24% plume; 20% regional) and organic aerosol (29% plume; 31% regional). The primary sub-micron aerosol emissions from London were minor compared to the larger regional background, with only limited increases in aerosol mass in the urban plume compared to the background (~12% mass increase on average). Black carbon mass was the major exception and more than doubled in the urban plume, leading to a decrease in the single scattering albedo from 0.91 in the regional aerosol to 0.86 in the London plume, on average. Our observations indicated that regional aerosol plays a major role on aerosol concentrations around London, at least during typical summertime conditions, meaning future efforts to reduce PM levels in London must account for regional as well as local aerosol sources.
Resumo:
The relationship between springtime air pollution transport of ozone (O3) and carbon monoxide (CO) and mid-latitude cyclones is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis for the period 2003–2012. In this study, the most intense spring storms (95th percentile) are selected for two regions, the North Pacific (NP) and the North Atlantic (NA). These storms (∼60 storms over each region) often track over the major emission sources of East Asia and eastern North America. By compositing the storms, the distributions of O3 and CO within a "typical" intense storm are examined. We compare the storm-centered composite to background composites of "average conditions" created by sampling the reanalysis data of the previous year to the storm locations. Mid-latitude storms are found to redistribute concentrations of O3 and CO horizontally and vertically throughout the storm. This is clearly shown to occur through two main mechanisms: (1) vertical lifting of CO-rich and O3-poor air isentropically, from near the surface to the mid- to upper-troposphere in the region of the warm conveyor belt; and (2) descent of O3-rich and CO-poor air isentropically in the vicinity of the dry intrusion, from the stratosphere toward the mid-troposphere. This can be seen in the composite storm's life cycle as the storm intensifies, with area-averaged O3 (CO) increasing (decreasing) between 200 and 500 hPa. The influence of the storm dynamics compared to the background environment on the composition within an area around the storm center at the time of maximum intensity is as follows. Area-averaged O3 at 300 hPa is enhanced by 50 and 36% and by 11 and 7.6% at 500 hPa for the NP and NA regions, respectively. In contrast, area-averaged CO at 300 hPa decreases by 12% for NP and 5.5% for NA, and area-averaged CO at 500 hPa decreases by 2.4% for NP while there is little change over the NA region. From the mid-troposphere, O3-rich air is clearly seen to be transported toward the surface, but the downward transport of CO-poor air is not discernible due to the high levels of CO in the lower troposphere. Area-averaged O3 is slightly higher at 1000 hPa (3.5 and 1.8% for the NP and NA regions, respectively). There is an increase of CO at 1000 hPa for the NP region (3.3%) relative to the background composite and a~slight decrease in area-averaged CO for the NA region at 1000 hPa (-2.7%).