973 resultados para TEMPERATURE-CHANGES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrinxã is a very promising amazonian fish for fish culture in Brazil. This study is aimed at determining the approximate tolerated temperature range in this species. Groups of ten young matrinxã specimens (15.1±0.8 cm average length and 58.3±10.3 g average weight) were subjected to 9 different temperatures for 24 hours without previous acclimation. Fish were transferred from an initial temperature of 27ºC to those ranging from 12 to 39ºC at 3ºC intervals. Both 12ºC and 39ºC temperatures were lethal for this species with 100% mortality rate. Following 2 minutes of exposure to 39ºC fish changed behavior, showing an increase in opercular movements and erratic swimming; mortality reached 100% after 18 minutes. At 12ºC, fish lost equilibrium immediately after exposure and started swimming erratically; after only 4 minutes fish became lethargic and remained immobile on the bottom of the tank. Total mortality was only evident following 24 hours. At 15ºC matrinxã lost equilibrium after 5 to 6 minutes of exposure but mortality was only 20% after 24 hours. Fish tolerated well temperatures ranging from 18 to 36ºC with 100% survival after 24 hours. This preliminary study suggests that temperatures between 18 and 36ºC are the approximate range normally tolerated by this species, although survival at other temperatures may be increased by gradually acclimating fish to the more severe increases or decreases in temperature. In addition, it indicates that matrinxã may be cultivated over a wide geographical area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been a long debate since the introduction of blood analysis prior to major sports events, to find out whether blood samples should be analysed right away on the site of competition or whether they should be transported and analysed in an anti-doping laboratory. Therefore, it was necessary to measure blood samples and compare the results obtained right after the blood withdrawal with those obtained after a few hours delay. Furthermore, it was interesting to determine the effect of temperature on the possible deterioration of red blood cell analytes used for testing recombinant erythropoietin abuse. Healthy volunteers were asked to give two blood samples and one of these was kept at room temperature whereas the second one was put into a refrigerator. On a regular basis, the samples were rolled for homogenisation and temperature stabilisation and were analysed with the same haematological apparatus. The results confirmed that blood controls prior to competition should be performed as soon as possible with standardised pre-analytical conditions to avoid too many variations notably on the haematocrit and the reticulocyte count. These recommendations should ideally also be applied to the all the blood controls compulsory for the medical follow up, otherwise unexplainable values could be misinterpreted and could for instance lead to a period of incapacity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low temperature (77K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. pee 6301, and cold-hardening in winter rye (Secale cereale L. cv. Puma). Samples were oriented for spectroscopy using the gel squeezing method (Abdourakhmanov et aI., 1979) and brought to 77K in liquid nitrogen. The linear dichroism (LD) spectra of Synechococcus 6301 phycobilisome/thylakoid membrane fragments cross-linked in light state 1 and light state 2 with glutaraldehyde showed differences in both chlorophyll a and phycobilin orientation. A decrease in the relative amplitude of the 681nm chlorophyll a positive LD peak was observed in membrane fragments in state 2. Reorientation of the phycobilisome (PBS) during the transition to state 2 resulted in an increase in core allophycocyanin absorption parallel to the membrane, and a decrease in rod phycocyanin parallel absorption. This result supports the "spillover" and "PBS detachment" models of the light state transition in PBS-containing organisms, but not the "mobile PBS" model. A model was proposed for PBS reorientation upon transition to state 2, consisting of a tilt in the antenna complex with respect to the membrane plane. Linear dichroism spectra of PBS/thylakoid fragments from the red alga, Porphyridium cruentum, grown in green light (containing relatively more PSI) and red light (containing relatively more PSll) were compared to identify chlorophyll a absorption bands associated with each photosystem. Spectra from red light - grown samples had a larger positive LD signal on the short wavelength side of the 686nm chlorophyll a peak than those from green light - grown fragments. These results support the identification of the difference in linear dichroism seen at 681nm in Synechococcus spectra as a reorientation of PSll chromophores. Linear dichroism spectra were taken of thylakoid membranes isolated from winter rye grown at 20°C (non-hardened) and 5°C (cold-hardened). Differences were seen in the orientation of chlorophyll b relative to chlorophyll a. An increase in parallel absorption was identified at the long-wavelength chlorophyll a absorption peak, along with a decrease in parallel absorption from chlorophyll b chromophores. The same changes in relative pigment orientation were seen in the LD of isolated hardened and non-hardened light-harvesting antenna complexes (LHCII). It was concluded that orientational differences in LHCII pigments were responsible for thylakoid LD differences. Changes in pigment orientation, along with differences observed in long-wavelength absorption and in the overall magnitude of LD in hardened and non-hardened complexes, could be explained by the higher LHCII monomer:oligomer ratio in hardened rye (Huner et ai., 1987) if differences in this ratio affect differential light scattering properties, or fluctuation of chromophore orientation in the isolated LHCII sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to demonstrate the importance of changing temperature variability with climate change in assessments of future heat-related mortality. Previous studies have only considered changes in the mean temperature. Here we present estimates of heat-related mortality resulting from climate change for six cities: Boston, Budapest, Dallas, Lisbon, London and Sydney. They are based on climate change scenarios for the 2080s (2070-2099) and the temperature-mortality (t-m) models constructed and validated in Gosling et al. (2007). We propose a novel methodology for assessing the impacts of climate change on heat-related mortality that considers both changes in the mean and variability of the temperature distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A multivariate fit to the variation in global mean surface air temperature anomaly over the past half century is presented. The fit procedure allows for the effect of response time on the waveform, amplitude and lag of each radiative forcing input, and each is allowed to have its own time constant. It is shown that the contribution of solar variability to the temperature trend since 1987 is small and downward; the best estimate is -1.3% and the 2sigma confidence level sets the uncertainty range of -0.7 to -1.9%. The result is the same if one quantifies the solar variation using galactic cosmic ray fluxes (for which the analysis can be extended back to 1953) or the most accurate total solar irradiance data composite. The rise in the global mean air surface temperatures is predominantly associated with a linear increase that represents the combined effects of changes in anthropogenic well-mixed greenhouse gases and aerosols, although, in recent decades, there is also a considerable contribution by a relative lack of major volcanic eruptions. The best estimate is that the anthropogenic factors contribute 75% of the rise since 1987, with an uncertainty range (set by the 2sigma confidence level using an AR(1) noise model) of 49–160%; thus, the uncertainty is large, but we can state that at least half of the temperature trend comes from the linear term and that this term could explain the entire rise. The results are consistent with the intergovernmental panel on climate change (IPCC) estimates of the changes in radiative forcing (given for 1961–1995) and are here combined with those estimates to find the response times, equilibrium climate sensitivities and pertinent heat capacities (i.e. the depth into the oceans to which a given radiative forcing variation penetrates) of the quasi-periodic (decadal-scale) input forcing variations. As shown by previous studies, the decadal-scale variations do not penetrate as deeply into the oceans as the longer term drifts and have shorter response times. Hence, conclusions about the response to century-scale forcing changes (and hence the associated equilibrium climate sensitivity and the temperature rise commitment) cannot be made from studies of the response to shorter period forcing changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traits used by bacteria to enhance ecological performance in natural environments are not well understood. Recognizing that the saprophytic plant-colonizing bacterium Pseudomonas fluorescens SBW25 experiences temperatures in its natural environment significantly cooler than the 28°C routinely used in the laboratory, we identified proteins differentially expressed between 28°C and the more environmentally relevant temperature of 14°C. Of 2102 protein isoforms, 32 were temperature responsive and identified by mass spectrometry. Seven of these (OmpR, MucD, GuaD, OsmY and three of unknown function, Tee1, Tee2 and Tee3) were selected for genetic and ecological analyses. In each instance, changes in protein expression with temperature were mirrored by parallel transcriptional changes. The fitness contribution of the genes encoding each of the seven proteins was larger at 14°C than 28°C and included two cases of trade-offs (enhanced fitness at one temperature and reduced fitness at the other – mucD and tee2 deletions). The relationship between the fitness effects of genes in vitro and in vivo was variable, but two temperature-responsive genes – osmY and mucD – contribute substantially to the ability of P. fluorescens to colonize the plant environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An idealized equilibrium model for the undisturbed partly cloudy boundary layer (BL) is used as a framework to explore the coupling of the energy, water, and carbon cycles over land in midlatitudes and show the sensitivity to the clear‐sky shortwave flux, the midtropospheric temperature, moisture, CO2, and subsidence. The changes in the surface fluxes, the BL equilibrium, and cloud cover are shown for a warmer, doubled CO2 climate. Reduced stomatal conductance in a simple vegetation model amplifies the background 2 K ocean temperature rise to an (unrealistically large) 6 K increase in near‐surface temperature over land, with a corresponding drop of near‐surface relative humidity of about 19%, and a rise of cloud base of about 70 hPa. Cloud changes depend strongly on changes of mean subsidence; but evaporative fraction (EF) decreases. EF is almost uniquely related to mixed layer (ML) depth, independent of background forcing climate. This suggests that it might be possible to infer EF for heterogeneous landscapes from ML depth. The asymmetry of increased evaporation over the oceans and reduced transpiration over land increases in a warmer doubled CO2 climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study uses an analytical model, based on the cooling-to-space approximation, and a fixed dynamical heating model to investigate the structure of the stratospheric cooling that occurs in response to a uniform increase in stratospheric water vapour (SWV). At all latitudes, the largest cooling occurs in the lower stratosphere and decreases in magnitude with height. The cooling is strongly enhanced in the Extratropics compared to the Tropics. This is markedly different to the case of an increase in CO2, which causes maximum cooling near the stratopause and a small warming in the tropical lower stratosphere. The qualitative differences in the structure of the cooling can be explained by the smaller opacity of water vapour bands in the stratosphere compared to CO2. The small opacity means that the magnitude of the initial heating rate perturbation only decreases by a factor of four between the upper and lower stratosphere for a SWV perturbation. Therefore, to balance the heating rate perturbation, the largest temperature change is required in the lower stratosphere. Increasing the background concentration of SWV causes the water vapour bands to become more opaque. For a SWV perturbation applied to a background SWV concentration ≥30 ppmv, the heating rate perturbation and temperature change structurally resemble those from an increase in CO2. In the Extratropics, the lower height of the tropopause is found to cause the enhancement in the cooling at those latitudes. By controlling the depth of atmosphere which adjusts to the SWV perturbation, the tropopause height affects the net exchange of radiation between the layers in the stratosphere as they cool. The latitudinal gradient in upwelling infrared radiation at the tropopause and variations in the background temperature are found to have only a minor effect on the structure of the stratospheric temperature response to a change in SWV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.