986 resultados para Synaptic contacts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] proteins are essential for membrane fusion and are conserved from yeast to humans. Sequence alignments of the most conserved regions were mapped onto the recently solved crystal structure of the heterotrimeric synaptic fusion complex. The association of the four α-helices in the synaptic fusion complex structure produces highly conserved layers of interacting amino acid side chains in the center of the four-helix bundle. Mutations in these layers reduce complex stability and cause defects in membrane traffic even in distantly related SNAREs. When syntaxin-4 is modeled into the synaptic fusion complex as a replacement of syntaxin-1A, no major steric clashes arise and the most variable amino acids localize to the outer surface of the complex. We conclude that the main structural features of the neuronal complex are highly conserved during evolution. On the basis of these features we have reclassified SNARE proteins into Q-SNAREs and R-SNAREs, and we propose that fusion-competent SNARE complexes generally consist of four-helix bundles composed of three Q-SNAREs and one R-SNARE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated psychosocial or restraint stress causes atrophy of apical dendrites in CA3 pyramidal neurons of the hippocampus, accompanied by specific cognitive deficits in spatial learning and memory. Excitatory amino acids mediate this atrophy together with adrenal steroids and the neurotransmitter serotonin. Because the mossy fibers from dentate granule neurons provide a major excitatory input to the CA3 proximal apical dendrites, we measured ultrastructural parameters associated with the mossy fiber–CA3 synapses in control and 21-day restraint-stressed rats in an effort to find additional morphological consequences of stress that could help elucidate the underlying anatomical as well as cellular and molecular mechanisms. Although mossy fiber terminals of control rats were packed with small, clear synaptic vesicles, terminals from stressed animals showed a marked rearrangement of vesicles, with more densely packed clusters localized in the vicinity of active zones. Moreover, compared with controls, restraint stress increased the area of the mossy fiber terminal occupied by mitochondrial profiles and consequently, a larger, localized energy-generating capacity. A single stress session did not produce these changes either immediately after or the next day following the restraint session. These findings provide a morphological marker of the effects of chronic stress on the hippocampus that points to possible underlying neuroanatomical as well as cellular and molecular mechanisms for the ability of repeated stress to cause structural changes within the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To determine the prevalence of the pathogenic strain of Neisseria meningitidis in contacts of patients with meningococcal disease, and to determine which contact groups are likely to be carriers and warrant chemoprophylaxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mnt, a tetrameric repressor encoded by bacteriophage P22, uses N-domain dimers to contact each half of its operator site. Experiments with a double mutant and structural homology with the P22 Arc repressor suggest that contacts made by Arg-28 and stabilized by Glu-33 are largely responsible for dimer–dimer cooperativity in Mnt. These dimer–dimer contacts are energetically more important for operator binding than solution tetramerization, which is mediated by an independent C-terminal coiled-coil domain. Indeed, once one dimer of the Mnt tetramer contacts an operator half site, binding of the second dimer occurs with an effective concentration much lower than that expected if both dimers were flexibly tethered. These results suggest that binding of the second dimer introduces some strain into the protein–DNA complex, a mechanism that could serve to limit the affinity of operator binding and to prevent strong binding of the Mnt tetramer to nonoperator sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have simultaneously measured the expression of postsynaptic γ-aminobutyric acid type A (GABAA) receptor clusters and of presynaptic boutons in neonatal rat hippocampal cultures between days 1 and 30. GABAA receptors were labeled with antibodies recognizing the extracellular domains of β2/3 and γ2 subunits. Boutons were visualized by activity-dependent uptake of the styryl dye FM4-64, or by antibodies against the presynaptic vesicular protein SV2 or the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). GABAA receptor clusters could be seen in living neurons already 6 h after culturing, much before presynaptic markers could be identified in nerve terminals. The densities of receptor clusters that contained the β2/3 subunits were constant between days 10 and 30 in culture, whereas γ2 subunit-containing clusters fluctuated and reached a maximum on day 20. SV2 and GAD staining could be measured from day 2 onwards. Clustering of GAD in presynaptic terminals and FM4-64 uptake were observed only at day 5 and afterward. SV2 staining and FM4-64 uptake increased in parallel between days 5 and 20 and remained constant thereafter. GAD-stained boutons were fewer than those labeled with other, less specific, presynaptic stains. They reached a maximum on day 20 and fell again toward day 30. Double labeling of GABAA receptors and of presynaptic boutons in neurons during differentiation showed that, even after 30 days in culture, large fractions of GABAA receptor clusters containing β2/3 and/or γ2 subunits remained extrasynaptic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational maps are of central importance to a neuronal representation of the outside world. In a map, neighboring neurons respond to similar sensory features. A well studied example is the computational map of interaural time differences (ITDs), which is essential to sound localization in a variety of species and allows resolution of ITDs of the order of 10 μs. Nevertheless, it is unclear how such an orderly representation of temporal features arises. We address this problem by modeling the ontogenetic development of an ITD map in the laminar nucleus of the barn owl. We show how the owl's ITD map can emerge from a combined action of homosynaptic spike-based Hebbian learning and its propagation along the presynaptic axon. In spike-based Hebbian learning, synaptic strengths are modified according to the timing of pre- and postsynaptic action potentials. In unspecific axonal learning, a synapse's modification gives rise to a factor that propagates along the presynaptic axon and affects the properties of synapses at neighboring neurons. Our results indicate that both Hebbian learning and its presynaptic propagation are necessary for map formation in the laminar nucleus, but the latter can be orders of magnitude weaker than the former. We argue that the algorithm is important for the formation of computational maps, when, in particular, time plays a key role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-methyl-d-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical “learning rule,” devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca2+-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP−/− mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction ∼10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrins link the cell's cytoskeleton to the extracellular matrix, as well as to receptors on other cells. These links occur not only at focal contacts but also at smaller integrin-containing protein complexes outside of focal contacts. We previously demonstrated the importance of focal contact-independent integrin–cytoskeleton interactions of β2 integrins: activation of adhesion resulted from a release of integrins from cytoskeletal constraints. To determine whether changes in integrin–cytoskeleton interactions were related to activation of the integrin, we used single particle tracking to examine focal contact-independent cytoskeletal associations of αIIbβ3-integrin, in which activation results in a large conformational change. Direct activation of αIIbβ3 by mutation did not mimic activation of lymphocytes with phorbol ester, because it enhanced integrin–cytoskeleton interactions, whereas activation of lymphocytes decreased them. Using additional integrin mutants, we found that both α- and β-cytoplasmic domains were required for these links. This suggests that 1) both β2- and β3-integrins interact with the cytoskeleton outside of focal contacts; 2) activation of a cell and activation of an integrin are distinct processes, and both can affect integrin–cytoskeleton interactions; and 3) the role of the α-subunit in integrin–cytoskeleton interactions in at least some circumstances is more direct than generally supposed.