948 resultados para Surface Conditions.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multipotent neural stem cells (NSCs) provide a model to investigate neurogenesis and develop mechanisms of cell transplantation. In order to define improved markers of stemness and lineage specificity, we examined self-renewal and multi-lineage markers during long-term expansion and under neuronal and astrocyte differentiating conditions in human ESC-derived NSCs (hNSC H9 cells). In addition, with proteoglycans ubiquitous to the neural niche, we also examined heparan sulfate proteoglycans (HSPGs) and their regulatory enzymes. Our results demonstrate that hNSC H9 cells maintain self-renewal and multipotent capacity during extended culture and express HS biosynthesis enzymes and several HSPG core protein syndecans (SDCs) and glypicans (GPCs) at a high level. In addition, hNSC H9 cells exhibit high neuronal and a restricted glial differentiative potential with lineage differentiation significantly increasing expression of many HS biosynthesis enzymes. Furthermore, neuronal differentiation of the cells upregulated SDC4, GPC1, GPC2, GPC3 and GPC6 expression with increased GPC4 expression observed under astrocyte culture conditions. Finally, downregulation of selected HSPG core proteins altered hNSC H9 cell lineage potential. These findings demonstrate an involvement for HSPGs in mediating hNSC maintenance and lineage commitment and their potential use as novel markers of hNSC and neural cell lineage specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper the effects of temperature and high strain rate loading on the formation of various surface patterns in Ni-Al nano-layers are discussed. Effects of boundary conditions on the B2 -> BCT phase transformation in the nano-layer are also discussed. This study is aimed at developing several interesting patterned surface structures in Ni-Al nanolayer by controlling the phase transformation temperature and mechanical loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of two boundary conditions generally assumed in solutions of the dynamo equation is related to the disappearance of the azimuthal field at the boundary. Parker (1984) points out that for the realization of this condition the field must escape freely through the surface. Escape requires that the field be detached from the gas in which it is embedded. In the case of the sun, this can be accomplished only through reconnection in the tenuous gas above the visible surface. Parker concludes that the observed magnetic activity on the solar surface permits at most three percent of the emerging flux to escape. He arrives at the conclusion that, instead of B(phi) = 0, the partial derivative of B(phi) to r is equal to zero. The present investigation is concerned with the effect of changing the boundary condition according to Parker's conclusion. Implications for the solar convection zone are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter discusses the effect on vision of a large group of pathological conditions, known as ocular surface disorders (OSDs), and presents the therapeutic strategies to reconstruct the abnormal ocular surface. If left untreated, most of the OSDs will lead to partial or total loss of eyesight, especially when limbal stem cell deficiency is involved. An overview of various treatment strategies is presented, with the emphasis on the development of the ex vivo expansion of corneal limbal epithelial cells (presumed to be progenitor or stem cells) and the creation of transplantable epithelial constructs. The use of naturally derived biomaterials (collagen, fibrin, amnion, etc.) or synthetic polymers (polylactides, thermoresponsive polymers, etc.) as substrata in these constructs is critically analyzed. Emphasis is placed on the templates from silk proteins, which are being developed by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper focuses on the reliability-based design optimization of gravity wall bridge abutments when subjected to active condition during earthquakes. An analytical study considering the effect of uncertainties in the seismic analysis of bridge abutments is presented. Planar failure surface has been considered in conjunction with the pseudostatic limit equilibrium method for the calculation of the seismic active earth pressure. Analysis is conducted to evaluate the external stability of bridge abutments when subjected to earthquake loads. Reliability analysis is used to estimate the probability of failure in three modes of failure viz. sliding failure of the wall on its base, overturning failure about its toe (or eccentricity failure of the resultant force) and bearing failure of foundation soil below the base of wall. The properties of backfill and foundation soil below the base of abutment are treated as random variables. In addition, the uncertainties associated with characteristics of earthquake ground motions such as horizontal seismic acceleration and shear wave velocity propagating through backfill soil are considered. The optimum proportions of the abutment needed to maintain the stability are obtained against three modes of failure by targeting various component and system reliability indices. Studies have also been made to study the influence of various parameters on the seismic stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation, tests were conducted on a tribological couple made of cylindrical lead pin with spherical tip against 080 M40 steel plates of different textures with varying roughness under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. Surface roughness parameters of the steel plates were measured using optical profilometer. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the surface texture of hard surfaces. A newly formulated non-dimensional hybrid roughness parameter called 'xi' (a product of number of peaks and maximum profile peak height) of the tool surface plays an important role in determining the frictional behaviour of the surfaces studied. The effect of surfaces texture on coefficient of friction was attributed to the variation of plowing component of friction, which in turn depends on the roughness parameter 'xi'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, airsea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August. Citation: Vinayachandran, P. N., J. Kurian, and C. P. Neema (2007), Indian Ocean response to anomalous conditions in 2006, Geophys. Res. Lett., 34, L15602, doi:10.1029/2007GL030194.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, air-sea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar UV radiation is harmful for life on planet Earth, but fortunately the atmospheric oxygen and ozone absorb almost entirely the most energetic UVC radiation photons. However, part of the UVB radiation and much of the UVA radiation reaches the surface of the Earth, and affect human health, environment, materials and drive atmospheric and aquatic photochemical processes. In order to quantify these effects and processes there is a need for ground-based UV measurements and radiative transfer modeling to estimate the amounts of UV radiation reaching the biosphere. Satellite measurements with their near-global spatial coverage and long-term data conti-nuity offer an attractive option for estimation of the surface UV radiation. This work focuses on radiative transfer theory based methods used for estimation of the UV radiation reaching the surface of the Earth. The objectives of the thesis were to implement the surface UV algorithm originally developed at NASA Goddard Space Flight Center for estimation of the surface UV irradiance from the meas-urements of the Dutch-Finnish built Ozone Monitoring Instrument (OMI), to improve the original surface UV algorithm especially in relation with snow cover, to validate the OMI-derived daily surface UV doses against ground-based measurements, and to demonstrate how the satellite-derived surface UV data can be used to study the effects of the UV radiation. The thesis consists of seven original papers and a summary. The summary includes an introduction of the OMI instrument, a review of the methods used for modeling of the surface UV using satellite data as well as the con-clusions of the main results of the original papers. The first two papers describe the algorithm used for estimation of the surface UV amounts from the OMI measurements as well as the unique Very Fast Delivery processing system developed for processing of the OMI data received at the Sodankylä satellite data centre. The third and the fourth papers present algorithm improvements related to the surface UV albedo of the snow-covered land. Fifth paper presents the results of the comparison of the OMI-derived daily erythemal doses with those calculated from the ground-based measurement data. It gives an estimate of the expected accuracy of the OMI-derived sur-face UV doses for various atmospheric and other conditions, and discusses the causes of the differences between the satellite-derived and ground-based data. The last two papers demonstrate the use of the satellite-derived sur-face UV data. Sixth paper presents an assessment of the photochemical decomposition rates in aquatic environment. Seventh paper presents use of satellite-derived daily surface UV doses for planning of the outdoor material weathering tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.