990 resultados para Summer monsoon onset


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to reconstruct past variations in the aeolian dust (Kosa) contribution to the Japan Sea, and to establish a direct link between terrestrial and marine climatic records, we have applied statistical procedures to distinguish and quantify detrital subcomponents within the detrital fraction of the late Quaternary hemipelagic sediments in the Japan Sea. Q-mode factor analysis with varimax and oblique rotation of the factors followed by multiple-regression analysis between mineral composition and factor loadings was conducted using six ''detrital'' elements. Four detrital subcomponents were defined, which are attributed to Kosa derived from ''typical'' loess, Kosa from ''weathered'' loess, and fine and coarse arc-derived detritus, respectively, based on comparisons with the chemical and mineral compositions of probable source materials. Using these detrital subcomponents, the variation in Kosa fraction was reconstructed for the last 200 ky. The results reveal millennial-scale as well as glacial-interglacial scale variations in Kosa contribution. Especially, millennial-scale variability of Kosa contribution suggests the presence of high frequency variation in summer monsoon precipitation in the central to east Asia during the last 200 ky.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon has a governing influence on the agricultural practices and livelihood in the highly populated islands of Indonesia. However, little is known about the factors that have influenced past monsoon activity in southern Indonesia. Here, we present a ~6000 years high-resolution record of Australian-Indonesian summer monsoon (AISM) rainfall variations based on bulk sediment element analysis in a sediment archive retrieved offshore northwest Sumba Island (Indonesia). The record suggests lower riverine detrital supply and hence weaker AISM rainfall between 6000 yr BP and ~3000 yr BP compared to the Late Holocene. We find a distinct shift in terrigenous sediment supply at around 2800 yr BP indicating a reorganization of the AISM from a drier Mid Holocene to a wetter Late Holocene in southern Indonesia. The abrupt increase in rainfall at around 2800 yr BP coincides with a grand solar minimum. An increase in southern Indonesian rainfall in response to a solar minimum is consistent with climate model simulations that provide a possible explanation of the underlying mechanism responsible for the monsoonal shift. We conclude that variations in solar activity play a significant role in monsoonal rainfall variability at multi-decadal and longer timescales. The combined effect of orbital and solar forcing explains important details in the temporal evolution of AISM rainfall during the last 6000 years. By contrast, we find neither evidence for volcanic forcing of AISM variability nor for a control by long-term variations in the El Niño-Southern Oscillation (ENSO).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk mineralogy of the terrigenous fraction of 99 samples from ODP Site 722 on the Owen Ridge, western Arabian Sea, has been determined by x-ray diffraction, using an internal standard method. The sampling interval, approximately 4.3 k.y., provides a detailed mineralogic record for the past 500 k.y. Previous studies have identified important modern continental sediment sources and the mineral assemblages presently derived from each. These studies have also demonstrated that most of this material is supplied by southwest and northwest winds during the summer monsoon. A variety of marine and terrestrial records and general circulation model (GCM) simulations have indicated the importance of monsoonal circulation during the Pleistocene and Holocene and have demonstrated increased aridity during glacial times and increased humidity during inter glacials. The mineralogic data generated here were used to investigate variations in source area weathering conditions during these environmental changes. Terrigenous minerals present include smectite, illite, palygorskite, kaolinite, chlorite, quartz, plagioclase feldspar, and dolomite. This mineralogy is consistent with the compositions of source areas presently supplying sediment to the Arabian Sea. An R-mode factor analysis has identified four mineral assemblages present throughout the past 500 k.y.: quartz/chlorite/dolomite (Factor 1), kaolinite/plagioclase/illite (Factor 2), smectite (Factor 3), and palygorskite/dolomite (Factor 4). Chlorite, illite, and palygorskite are extremely susceptible to chemical weathering, and a spectral comparison of these factors with the eolian mass accumulation rate (MAR) record from Hole 722B (an index of dust source area aridity) indicates that Factors 1, 2, and 4 are directly related to changes in aridity. Because of these characteristics, Factors 1,2, and 4 are interpreted to originate from arid source regions. Factor 3 is interpreted to record more humid source conditions. Time-series of scores for the four factors are dominated by short-term (10-100 k.y.) variability, and do not correlate well to glacial/interglacial fluctuations in the time domain. These characteristics suggest that local climatic shifts were complex, and that equilibrium weathering assemblages did not develop immediately after climatic change. Spectral analysis of factor scores identifies peaks at or near the primary Milankovitch frequencies for all factors. Factor 1 (quartz/chlorite/dolomite), Factor 2 (kaolinite/plagioclase/illite), and Factor 4 (illite/palygorskite) are coherent and in phase with the MAR record over the 23, 41, and 100 k.y. bands, respectively. The reasons for coherency at single Milankovitch frequencies are not known, but may include differences in the susceptibilities of minerals to varying time scales of weathering and/or preferential development of suitable continental source environments by climatic changes at the various Milankovitch frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyzed sediment from Ocean Drilling Program (ODP) Site 1144 in the northern South China Sea to examine the weathering response of SE Asia to the strengthening of the East Asian Monsoon (EAM) since 14 ka. Our high-resolution record highlights the decoupling between continental chemical weathering, physical erosion and summer monsoon intensity. Mass accumulation rates, Ti/Ca, K/Rb, hematite/goethite and 87Sr/86Sr show sharp excursions from 11 to 8 ka, peaking at 10 ka. Clay minerals show a shorter-lived response with a higher kaolinite/(illite + chlorite) ratio at 10.7-9.5 ka. However, not all proxies show a clear response to environmental changes. Magnetic susceptibility rises sharply between 12 and 11 ka. Grain-size becomes finer from 14 to 10 ka and then coarsens until ~7 ka, but is probably controlled by bottom current flow and sealevel. Sr and Nd isotopes show that material is dominantly eroded from Taiwan with a lesser flux from Luzon, while clay mineralogy suggests that the primary sources during the Early Holocene were reworked via the shelf in the Taiwan Strait, rather than directly from Taiwan. Erosion was enhanced during monsoon strengthening and caused reworking of chemically weathered Pleistocene sediment largely from the now flooded Taiwan Strait, which was transgressed by ~8 ka, cutting off supply to the deep-water slope. None of the proxies shows an erosional response lasting until ~6 ka, when speleothem oxygen isotope records indicate the start of monsoon weakening. Although more weathered sediments were deposited from 11 to 8 ka when the monsoon was strong these are reworked and represent more weathering during the last glacial maximum (LGM) when the summer monsoon was weaker but the shelves were exposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clay mineral assemblages at ODP Site 1146 in the northern South China Sea are used to investigate sediment source and transport processes and to evaluate the evolution of the East Asian monsoon over the past 2 Myr. Clay minerals consist mainly of illite (22-43%) and smectite (12-48%), with associated chlorite (10-30%), kaolinite (2-18%), and random mixed-layer clays (5-22%). Hydrodynamic and mineralogical studies indicate that illite and chlorite sources include Taiwan and the Yangtze River, that smectite and mixed-layer clays originate predominantly from Luzon and Indonesia, and that kaolinite is primarily derived from the Pearl River. Mineral assemblages indicate strong glacial-interglacial cyclicity, with high illite, chlorite, and kaolinite content during glacials and high smectite and mixed-layer clay content during interglacials. During interglacials, summer enhanced monsoon (southwesterly) currents transport more smectite and mixed-layer clays to Site 1146 whereas during glacials, enhanced winter monsoon (northerly) currents transport more illite and chlorite from Taiwan and the Yangtze River. The ratio (smectite+mixed layers)/(illite+chlorite) was adopted as a proxy for East Asian monsoon variability. Higher ratios indicate strengthened summer-monsoon winds and weakened winter-monsoon winds during interglacials. In contrast, lower ratios indicate a strongly intensified winter monsoon and weakened summer monsoon during glacials. Spectral analysis indicates the mineral ratio was dominantly forced by monsoon variability prior to the development of large-scale glaciation at 1.2 Myr and by both monsoon variability and the effects of changing sea level in the interval 1.2 Myr to present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemical index of alteration (CIA) and elemental ratios that are sensitive to chemical weathering, such as Ca/Ti, Na/Ti, Al/Ti, Al/Na, Al/K, and La/Sm, were analyzed for detrital sediments at Ocean Drilling Program Site 1148 from the northern South China Sea to reveal information of chemical weathering in the source regions during the early Miocene. High CIA values of ~80, coupled with high Al/Ti and Al/Na and low Na/Ti and Ca/Ti, are observed for the sediments at ~23 Ma, indicating a high chemical weathering intensity in the north source region, i.e., south China. This was followed by gradual decreases in Al/Ti, Al/Na, La/Sm, and Al/K ratios, as well as the CIA values, and increases in Ca/Ti and Na/Ti ratios. These records together with other paleoclimate proxies, such as black carbon d13C and benthic foraminifer d18O, give reliable information on the climate changes in south China. Our results show that the climate in south China was warm and humid in the early Miocene (~23 Ma) according to the chemical weathering records. The humidity in south China decreased from the early Miocene to Present with several fluctuations centering at approximately 15.7 Ma, 8.4 Ma, and 2.5 Ma, coincident with the global cooling since the middle Miocene. These climate changes implied that the summer east Asian monsoon has dramatically affected south China in the early Miocene, whereas the influence of the summer monsoon on this region has decreased continuously since that time, probably because of the intensification of the winter monsoon. Such an evolution for the east Asian monsoon is different from that for the Indian monsoon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Nino-Southern Oscillation (ENSO) frequency domain (2.5-8.0 yr), followed by a slightly weaker but highly significant decadal signal (9-13 yr), with some evidence of lesser but significant rainfall variability at interclecadal time scales (15-18 yr). Most of the rainfall variability significantly linked to frequencies tower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined seasonal to monthly resolution coral skeletal delta(18)O, Sr/Ca, and Mg/Ca records are reported for one modem and two late Holocene Porites lutea corals from a fringing reef at Leizhou Peninsula, the northern coast of the South China Sea (SCS). All the profiles for the period 1989-2000 reveal annual cycles well correlated with instrumental sea surface temperatures (SST), and display broad peaks in summer and narrow troughs in winter, reflecting seasonal growth rate variations. Calibration against instrumental SST yields the following equations: delta(18)O=-0.174(+/- 0.010)xSST(degrees C)-1.02(+/- 0.27) (MSWD=5.8), Sr/Ca-(mmol/mol)=-0.0424(+/- 0.0031)xSST(degrees C)+9.836(+/- 0.082) (MSWD=8.6), and Mg/Ca-(mmol/mol)=0.110(+/- 0.009)XSST(degrees C)+ 1.32(+/- 0.23) (MSWD=55). The scatter in the Mg/Ca-SST relationship is much larger than analytical uncertainties can account for, suggesting the presence of SST-unrelated components in the Mg/Ca variation. Calculated Sr/Ca-SST values for two later Holocene Porites lutea samples (U-series ages similar to 541 BC and similar to 487 AD, respectively) from the same reef suggest that SST in the SCS at similar to 541 BC was nearly as warm as in the 1990s (the warmest decade of the last century), but at similar to 487 AD, it was significantly cooler. This observation is consistent with climatic data reported in Chinese historic documents, confirming that the Sr/Ca-SST relationship is a reliable thermometer. Removing the SST component in the delta(18)O variation based on calculated Sr/Ca-SST values, the residual delta(18)O reflects the deviation of the Holocene seawater delta(18)O from the modem value, which is also a measure of the Holocene sea surface salinity (SSS) or the summer monsoon moisture level in mainland China. Such residual delta(18)O was close to zero at similar to 541 BC and -0.3 parts per thousand at similar to 487 AD, suggesting that it was as wet as in the 1990s at similar to 541 BC but significantly drier at similar to 487 AD in mainland China, which are also consistent with independent historic records. Calculated Mg/Ca-SST values for the two late Holocene corals are significantly lower than the Sr/Ca-SST values and are also in conflict with Chinese historic records, suggesting that coral Mg/Ca is not reliable proxy for SST. At comparable Sr/Ca ranges, fossil corals always display negative Mg/Ca offsets if compared with the modem coral of the same site. We interpret this observation as due to preferential loss of Mg during meteoric dissolution of cryptic Mg-calcite-bearing microbialites in the exposed fossil corals. Microbialites (MgO up to 17%, Sr only 100-300 ppm) are ubiquitous during reef-building processes and their presence in only a trace amount will have a significant impact on coral Mg/Ca ratios without detectable influence on coral Sr/Ca ratios. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.