967 resultados para Summer Monsoon


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal?ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Niño-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal?ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clay mineral assemblages at ODP Site 1146 in the northern South China Sea are used to investigate sediment source and transport processes and to evaluate the evolution of the East Asian monsoon over the past 2 Myr. Clay minerals consist mainly of illite (22-43%) and smectite (12-48%), with associated chlorite (10-30%), kaolinite (2-18%), and random mixed-layer clays (5-22%). Hydrodynamic and mineralogical studies indicate that illite and chlorite sources include Taiwan and the Yangtze River, that smectite and mixed-layer clays originate predominantly from Luzon and Indonesia, and that kaolinite is primarily derived from the Pearl River. Mineral assemblages indicate strong glacial-interglacial cyclicity, with high illite, chlorite, and kaolinite content during glacials and high smectite and mixed-layer clay content during interglacials. During interglacials, summer enhanced monsoon (southwesterly) currents transport more smectite and mixed-layer clays to Site 1146 whereas during glacials, enhanced winter monsoon (northerly) currents transport more illite and chlorite from Taiwan and the Yangtze River. The ratio (smectite+mixed layers)/(illite+chlorite) was adopted as a proxy for East Asian monsoon variability. Higher ratios indicate strengthened summer-monsoon winds and weakened winter-monsoon winds during interglacials. In contrast, lower ratios indicate a strongly intensified winter monsoon and weakened summer monsoon during glacials. Spectral analysis indicates the mineral ratio was dominantly forced by monsoon variability prior to the development of large-scale glaciation at 1.2 Myr and by both monsoon variability and the effects of changing sea level in the interval 1.2 Myr to present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical index of alteration (CIA) and elemental ratios that are sensitive to chemical weathering, such as Ca/Ti, Na/Ti, Al/Ti, Al/Na, Al/K, and La/Sm, were analyzed for detrital sediments at Ocean Drilling Program Site 1148 from the northern South China Sea to reveal information of chemical weathering in the source regions during the early Miocene. High CIA values of ~80, coupled with high Al/Ti and Al/Na and low Na/Ti and Ca/Ti, are observed for the sediments at ~23 Ma, indicating a high chemical weathering intensity in the north source region, i.e., south China. This was followed by gradual decreases in Al/Ti, Al/Na, La/Sm, and Al/K ratios, as well as the CIA values, and increases in Ca/Ti and Na/Ti ratios. These records together with other paleoclimate proxies, such as black carbon d13C and benthic foraminifer d18O, give reliable information on the climate changes in south China. Our results show that the climate in south China was warm and humid in the early Miocene (~23 Ma) according to the chemical weathering records. The humidity in south China decreased from the early Miocene to Present with several fluctuations centering at approximately 15.7 Ma, 8.4 Ma, and 2.5 Ma, coincident with the global cooling since the middle Miocene. These climate changes implied that the summer east Asian monsoon has dramatically affected south China in the early Miocene, whereas the influence of the summer monsoon on this region has decreased continuously since that time, probably because of the intensification of the winter monsoon. Such an evolution for the east Asian monsoon is different from that for the Indian monsoon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Nino-Southern Oscillation (ENSO) frequency domain (2.5-8.0 yr), followed by a slightly weaker but highly significant decadal signal (9-13 yr), with some evidence of lesser but significant rainfall variability at interclecadal time scales (15-18 yr). Most of the rainfall variability significantly linked to frequencies tower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combined seasonal to monthly resolution coral skeletal delta(18)O, Sr/Ca, and Mg/Ca records are reported for one modem and two late Holocene Porites lutea corals from a fringing reef at Leizhou Peninsula, the northern coast of the South China Sea (SCS). All the profiles for the period 1989-2000 reveal annual cycles well correlated with instrumental sea surface temperatures (SST), and display broad peaks in summer and narrow troughs in winter, reflecting seasonal growth rate variations. Calibration against instrumental SST yields the following equations: delta(18)O=-0.174(+/- 0.010)xSST(degrees C)-1.02(+/- 0.27) (MSWD=5.8), Sr/Ca-(mmol/mol)=-0.0424(+/- 0.0031)xSST(degrees C)+9.836(+/- 0.082) (MSWD=8.6), and Mg/Ca-(mmol/mol)=0.110(+/- 0.009)XSST(degrees C)+ 1.32(+/- 0.23) (MSWD=55). The scatter in the Mg/Ca-SST relationship is much larger than analytical uncertainties can account for, suggesting the presence of SST-unrelated components in the Mg/Ca variation. Calculated Sr/Ca-SST values for two later Holocene Porites lutea samples (U-series ages similar to 541 BC and similar to 487 AD, respectively) from the same reef suggest that SST in the SCS at similar to 541 BC was nearly as warm as in the 1990s (the warmest decade of the last century), but at similar to 487 AD, it was significantly cooler. This observation is consistent with climatic data reported in Chinese historic documents, confirming that the Sr/Ca-SST relationship is a reliable thermometer. Removing the SST component in the delta(18)O variation based on calculated Sr/Ca-SST values, the residual delta(18)O reflects the deviation of the Holocene seawater delta(18)O from the modem value, which is also a measure of the Holocene sea surface salinity (SSS) or the summer monsoon moisture level in mainland China. Such residual delta(18)O was close to zero at similar to 541 BC and -0.3 parts per thousand at similar to 487 AD, suggesting that it was as wet as in the 1990s at similar to 541 BC but significantly drier at similar to 487 AD in mainland China, which are also consistent with independent historic records. Calculated Mg/Ca-SST values for the two late Holocene corals are significantly lower than the Sr/Ca-SST values and are also in conflict with Chinese historic records, suggesting that coral Mg/Ca is not reliable proxy for SST. At comparable Sr/Ca ranges, fossil corals always display negative Mg/Ca offsets if compared with the modem coral of the same site. We interpret this observation as due to preferential loss of Mg during meteoric dissolution of cryptic Mg-calcite-bearing microbialites in the exposed fossil corals. Microbialites (MgO up to 17%, Sr only 100-300 ppm) are ubiquitous during reef-building processes and their presence in only a trace amount will have a significant impact on coral Mg/Ca ratios without detectable influence on coral Sr/Ca ratios. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and d18O analyses and to estimate seawater d18O (d18Osw). The difference between surface and thermocline temperatures (delta T) and d18Osw (delta d18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our delta d18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the d18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ~18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum d18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multivariate analysis was performed on percentages of 46 species of unstained deep-sea benthic foraminifera from 131 core-top to near-core-top samples (322-5013 m) from across the Indian Ocean. Faunal data are combined with GEOSECS geochemical data to investigate any relationship between benthic foraminifera (assemblages and species) and deep-sea properties. In general, benthic foraminifera show a good correlation to surface productivity, organic carbon flux to the sea floor, deep-sea oxygenation and, to a lesser extent, to bottom temperature, without correlation with the water depths. The foraminiferal census data combined with geochemical data has enabled the division of the Indian Ocean into two faunal provinces. Province A occupies the northwestern Indian Ocean (Arabian Sea region) where surface primary production has a major maximum during the summer monsoon season and a secondary maximum during winter monsoon season that leads to high organic flux to the seafloor, making the deep-sea one of the most oxygen-deficient regions in the world ocean, with a pronounced oxygen minimum zone (OMZ). This province is dominated by benthic foraminifera characteristic of low oxygen and high organic food flux including Uvigerina peregrina, Robulus nicobarensis, Bolivinita pseudopunctata, Bolivinita sp., Bulimina aculeata, Bulimina alazanensis, Ehrenbergina carinata and Cassidulina carinata. Province B covers southern, southeastern and eastern parts of the Indian Ocean and is dominated by Nuttallides umbonifera, Epistominella exigua, Globocassidulina subglobosa, Uvigerina proboscidea, Cibicides wuellerstorfi, Cassidulina laevigata, Pullenia bulloides, Pullenia osloensis, Pyrgo murrhina, Oridorsalis umbonatus, Gyroidinoides (= Gyroidina) soldanii and Gyroidinoides cf. gemma suggesting well-oxygenated, cold deep water with low (oligotrophic) and pulsed food supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in the Indian summer monsoon (ISM) intensity during the last 16.7?ka have been studied using organic carbon (Corg), d15N of sedimentary organic matter, CaCO3, sediment texture, d18OC, and Mg/Ca-derived sea surface temperature, d18O of sea water and sea surface salinity, in a 14C-dated sediment core from the eastern Arabian Sea. The d18O in water and planktonic foraminifera shells off the central west coast of India may be controlled by the ISM intensity as this area receives high precipitation and land runoff. Also, the Corg and CaCO3 contents of sediments and d15N of sedimentary organic matter may be linked to ISM-induced productivity and denitrification. The results of the present study reveal that between 16 and 15.2 ka BP, the ISM was weak with minor fluctuations and started intensifying around 15.2 ka BP, at the onset of the Bølling-Ållerød (B-A) event. The B-A event is characterized by higher water column denitrification rates comparable to the present day. The ISM signatures observed in the d18OC record of B-A event compare well with those from Timta cave of the western Himalayas and also the Asian summer monsoon signatures from the Hulu caves in China and warming signatures in Greenland Ice Sheet Project 2 (GISP2) suggesting atmospheric teleconnections through Intertropical Convergence Zone. The boundary between the Younger Dryas and the Holocene is discernible with small episodes of abrupt events of increased ISM intensity. This decrease in d18OC values at ~11.8 ka BP is contemporary with June solar insolation maximum at 30° north and the increase in methane in the GISP2 ice core supporting episodes of warmer climate and increase in ISM intensity. The ISM seems to have been most stable between 7 and 5.6 ka BP. The core exhibits periodicity of 500 years that is comparable to the Atlantic water formation and the Chinese monsoon.