829 resultados para Subwavelength plasmonic grating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the application of plasmonic gold nanostructures for mercury detection. Various gold and silver single nanostructures and gold nanostructure assemblies were characterised in detail by correlated single nanostructure spectroscopy and electron microscopy. Several routes for mercury detection were explored: plasmon resonance energy transfer (PRET) upon Hg2+ binding to immobilised gold nanoparticle-organic ligand hybrid structures and amalgamation of single immobilised gold nanorods upon chemical and upon electrochemical reduction of Hg2+ ions. The amalgamation approach showed large potential with extraordinary shifts of the nanorods’ scattering spectra upon exposure to reduced mercury; a result of compositional and morphological change induced in the nanorod by amalgamation with mercury. A shift of 5 nm could be recorded for a concentration as low 10 nM Hg2+. Through detailed time-dependent experiments insights into the amalgamation mechanism were gained and a model comprising 5 steps was developed. Finally, spectroelectrochemistry proved to be an excellent way to study in real time in-situ the amalgamation of mercury with gold nanorods paving the way for future work in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transmission of a two-dimensional array of subwavelength holes in a metal film has been numerically studied using a differential method. Transmission spectra have been calculated showing a significant increase of the transmission in certain spectral ranges corresponding to the excitation of the surface polariton Bloch waves on a metal surface with a periodic hole structure. Under the enhanced transmission conditions, the near-field distribution of the transmitted light reveals an intensity enhancement greater than 2 orders of magnitude in localized (similar to 40 nm) spots resulting from the interference of the surface polaritons Bragg scattered by the holes in an array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-optic response of a cell consisting of a thin layer of liquid crystal deposited onto gold nanorods embedded in thin film alumina with a transparent top electrode has been investigated. For p-polarized light incident from the liquid crystal side, the extinction peak associated with the nanorod longitudinal plasmon resonance is completely suppressed. The peak could be recovered by applying an external electric field parallel to the long axis of the nanorods. No extinction peak suppression is observed when the light was incident from the nanorod side of the cell. The effect is explained by polarization properties of liquid crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An etched long-period grating was used as a refractive index sensor for vapours of four volatile organic compounds, i.e. m-xylene, cyclohexane, trichloroethylene and commercial gasoline. The sensitivity to the vapours was further increased by solid-phase microextraction into a coating made of polydimethylsiloxane (PDMS)/polymethyl-octylsiloxane (PMOS) co-polymer. By further amplification of the optical loss in an optical cavity made of two identical fiber-Bragg gratings and interrogation by phase-shift cavity ring-down spectroscopy we could detect and distinguish xylene (detection limit: 134ppm) from trichloroethylene (3300ppm), cyclohexane (1850ppm) and gasoline (10,500ppm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subwavelength resonators at FIR are presented and studied. The structures consist of 1D cavities formed between a metallized (silver) surface and a metamaterial surface comprising a periodic array of silver patches on a silver-backed silicon substrate. The concept derives from recent discoveries of artificial magnetic conductors (AMC). By studying the currents excited on the metamaterial surface by a normally incident plane wave, the nature of the emerging resonant phenomena and the physical mechanism underlying the AMC operation are investigated. Full wave simulations, based on finite element method and time-domain transmission line modelling technique, have been carried out to demonstrate the effective AMC boundary condition and prove the possibilities for subwavelength cavities. The quality factor of the resonant cavities is assessed as a function of the cavity profile. It is demonstrated that the quality factor drops to about 1/8 of the half-wavelength value for lambda/8 resonant cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Special issue on Sensor Systems for Structural Health Monitoring Abstract—This study addresses the direct calibration of optical fiber strain sensors used for structural monitoring and is carried out in situ. The behavior of fiber-Bragg-grating-based sensor systems when attached to metal bars, in a manner representative of their use as reinforcement bars in structures, was examined and their response calibrated. To ensure the validity of the measurements,this was done using an extensometer with a further calibrationagainst the response of electrical resistance strain gauges, often conventionally used, for comparison. The results show a repeatable calibration generating a suitable geometric factor of extension to strain for these sensors, to enable accurate strain data to be obtained when the fiber-optic sensor system is in use in structural monitoring applications.