952 resultados para Submarine topography
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms.
Resumo:
OUTLINE: •Introduction •Experimental Setup • Experimental Procedure • Experimental Results - Surface Roughness - Residual Stresses - Friction - Wear - EDX •Conclusions
Resumo:
There are different methods of construction of outfall pipelines, all of them have to solve the problem of placing a tube over a known location in sea bed. This process has sometimes to be done in difficult conditions as waves, current or depths greater than 30 metres, where a diver cannot go safely beyond. Also the placement of the pipeline must be carried out without any damage to the tube, therefore a close control of the deflections and stresses in the structure must be performed. The importance of this control should be not diminished because a damage during the construction would imply a very difficult and expensive repair, that should be avoided with a proper design of the construction process. This paper is focused in the analysis of the tube during its placement according to a very well known construction method consisting in placing the tube from a boat, where all the connections between consecutive tube segments are performed, and also the whole process is controlled. This method is used for outfall as well as offshore pipelines, and it will be described in Section 2
Resumo:
The “3-color, 46-bead” model of a folding polypeptide is the vehicle for adapting to proteins a mode of analysis used heretofore for atomic clusters, to relate the topography of the potential surface to the dynamics that lead to formation of selected structures. The analysis is based on sequences of stationary points—successive minima, joined by saddles—that rise monotonically in energy from basin bottoms. Like structure-seeking clusters, the potential surface of the model studied here is staircase-like, rather than sawtooth-like, with highly collective motions required for passage from one minimum to the next. The surface has several deep basins whose minima correspond to very similar structures, but which are separated by high energy barriers.
Resumo:
To determine the dynamics of transcript extrusion from Escherichia coli RNA polymerase (RNAP), we used degradation of the RNA by RNases T1 and A in a series of consecutive elongation complexes (ECs). In intact ECs, even extremely high doses of the RNases were unable to cut the RNA closer than 14–16 nt from the 3′ end. Our results prove that all of the cuts detected within the 14-nt zone are derived from the EC that is denatured during inactivation of the RNases. The protected zone monotonously translocates along the RNA after addition of new nucleotides to the transcript. The upstream region of the RNA heading toward the 5′ end is cleaved and dissociated from the EC, with no effect on the stability and activity of the EC. Most of the current data suggest that an 8- to 10-nt RNA⋅DNA hybrid is formed in the EC. Here, we show that an 8- to 10-nt RNA obtained by truncating the RNase-generated products further with either GreB or pyrophosphate is sufficient for the high stability and activity of the EC. This result suggests that the transcript–RNAP interaction that is required for holding the EC together can be limited to the RNA region involved in the 8- to 10-nt RNA⋅DNA hybrid.
Resumo:
To ascertain the membrane topography of the multi-transmembrane spanning presenilin proteins PS-1 and PS-2, anti-peptide antibodies were raised to several specific amino acid sequences in the two proteins, and, after their specificity was ascertained, the anti-peptide antibodies were used in immunofluorescent labeling of live PS-transfected, cultured DAMI cells, which are impermeable to the antibodies, as well as of their fixed and permeabilized counterparts. In such experiments, antibodies that specifically stain the intact live cells must label epitopes of the PS proteins that are on the exterior face of the plasma membrane whereas those antibodies that do not stain the live cells but do stain the fixed and permeabilized cells must label epitopes that face the cytoplasmic side of the membrane. The results obtained were entirely in accord with the predictions of the seven-transmembrane spanning topography (like that of rhodopsin and the β-adrenergic receptor) and were totally inconsistent with the expectations for either the six- or eight-transmembrane topographies that have been proposed.
Resumo:
Formation of a transcriptionally competent open complex is a highly regulated multistep process involving at least two intermediates. The rate of formation and stability of the intermediate complexes often determine promoter strength. However, the detailed mechanism of formation of the open complex and the high resolution structures of these intermediates are not known. In this study the structures of the open and intermediate complexes formed on the lacUV5 promoter by Escherichia coli RNA polymerase were analyzed using ‘zero length’ DNA–protein cross-linking. In both the open and the intermediate complexes the core subunits (β′ and β) interact with lacUV5 DNA in a similar way, forming DNA–protein contacts flanking the initiation site. At the same time, the recognition (σ70) subunit closely interacts with the promoter only in the open complex. In combination with our previous results, the data suggest that during promoter recognition contacts of the σ subunit with core RNA polymerase and promoter DNA are rearranged in concert. These rearrangements constitute a landmark of transition from the intermediate to the open complex, identifying the σ subunit as a key player directing formation of the open complex.
Resumo:
Experimental information on the structure and dynamics of molten globules gives estimates for the energy landscape's characteristics for folding highly helical proteins, when supplemented by a theory of the helix-coil transition in collapsed heteropolymers. A law of corresponding states relating simulations on small lattice models to real proteins possessing many more degrees of freedom results. This correspondence reveals parallels between "minimalist" lattice results and recent experimental results for the degree of native character of the folding transition state and molten globule and also pinpoints the needs of further experiments.
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Resumen de la presentación oral en el 6th EOS Topical Meeting on Visual and Physiological Optics (EMVPO 2012), Dublín, 20-22 Agosto 2012.
Resumo:
Presentación oral realizada en el 6th EOS Topical Meeting on Visual and Physiological Optics (EMVPO 2012), Dublín, 20-22 Agosto 2012.
Resumo:
Purpose: To compare anterior and posterior corneal curvatures between eyes with primary open-angle glaucoma (POAG) and healthy eyes. Methods: This is a prospective, cross-sectional, observer-masked study. A total of 138 white subjects (one eye per patient) were consecutively recruited; 69 eyes had POAG (study group), and the other 69 comprised a group of healthy control eyes matched for age and central corneal pachymetry with the study ones. Exclusion criteria included any corneal or ocular inflammatory disease, previous ocular surgery, or treatment with carbonic anhydrase inhibitors. The same masked observer performed Goldmann applanation tonometry, ultrasound pachymetry, and Orbscan II topography in all cases. Central corneal thickness, intraocular pressure, and anterior and posterior topographic elevation maps were analyzed and compared between both groups. Results: Patients with POAG had greater forward shifting of the posterior corneal surface than that in healthy control eyes (p < 0.01). Significant differences in anterior corneal elevation between controls and POAG eyes were also found (p < 0.01). Conclusions: Primary open-angle glaucoma eyes have a higher elevation of the posterior corneal surface than that in central corneal thickness–matched nonglaucomatous eyes.
Resumo:
The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies and global surface height on a spherical grid with now 30-arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO, 2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the Interna- tional Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry sur- rounding the Greenland continent. We corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Sermilik Fjord assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities.