940 resultados para Steering-gear
Resumo:
In the wake of recent corporate collapses, 'corporate governance' has received unprecedented levels of attention. It can be narrowly defined as how a company is directed and steered. The responsibility of steering a company is entrusted with the board of directors, who become the focus of governance mechanisms.Yet this is not as straightforward as it appears - Australia has experienced massive shifts in business regulations over the past two decades. One innovation in Australian business regulation is 'enforced self-regulation' which combines the benefits of voluntary self-regulation with the coercive power of the State, implemented via a compliance program. A possible hazard of compliance system is that management might treat this responsibility as a 'box ticking' exercise. Therefore effective governance and compliance entails more than setting up internal and regulatory mechanisms; the willingness of various stakeholders to collaborate is crucial. This suggests that managing relationships between stakeholders of an organization is the key to averting corporate collapses.
Resumo:
Crashes at rail level crossings represent a significant problem, both in Australia and worldwide. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles, now provide researchers with the opportunity to further understand driver behaviour at rail level crossings in ways not previously possible. This paper gives an overview of a recent on-road pilot study of driver behaviour at rail level crossings in which 25 participants drove a pre-determined route, incorporating 4 rail level crossings, using MUARC's instrumented On-Road Test Vehicle (ORTeV). Drivers provided verbal commentary whilst driving the route, and a range of other data were collected, including eye fixations, forward, cockpit and driver video, and vehicle data (speed, braking, steering wheel angle, lane tracking etc). Participants also completed a post trial cognitive task analysis interview. Extracts from the wider analyses are used to examine in depth driver behaviour at one of the rail level crossings encountered during the study. The analysis presented, along with the overall analysis undertaken, gives insight into the driver and wider systems factors that shape behaviour at rail level crossings, and highlights the utility of using a multi-method, instrumented vehicle approach for gathering data regarding driver behaviour in different contexts.
Resumo:
The mechanisms of helicopter flight create a unique, high-vibration environment which can play havoc with the accurate operation of on-board sensors. Vibration isolation of electronic sensors from structural borne oscillations is paramount to their reliable and accurate use. Effective isolation is achieved by realising a trade-off between the properties of the suspended instrument package, and the isolation mechanism. This is made more difficult as the weight and size of the sensors and computing hardware decreases with advances in technology. This paper presents a history of the design, challenges, constraints and construction of an integrated isolated vision and sensor platform and landing gear for the CSIRO autonomous X-Cell helicopter. The results of isolation performance and in-flight tests of the platform in autonomous flight are presented.
Resumo:
While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.
Resumo:
Human error, its causes and consequences, and the ways in which it can be prevented, remain of great interest to road safety practitioners. This paper presents the findings derived from an on-road study of driver errors in which 25 participants drove a pre-determined route using MUARC's On-Road Test Vehicle (ORTeV). In-vehicle observers recorded the different errors made, and a range of other data was collected, including driver verbal protocols, forward, cockpit and driver video, and vehicle data (speed, braking, steering wheel angle, lane tracking etc). Participants also completed a post trial cognitive task analysis interview. The drivers tested made a range of different errors, with speeding violations, both intentional and unintentional, being the most common. Further more detailed analysis of a sub-set of specific error types indicates that driver errors have various causes, including failures in the wider road 'system' such as poor roadway design, infrastructure failures and unclear road rules. In closing, a range of potential error prevention strategies, including intelligent speed adaptation and road infrastructure design, are discussed.
Resumo:
The Tiddas Showin’ Up, Talkin’ Up and Puttin’ Up: Indigenous Women and Educational Leadership project was led by Flinders University in partnership with the Australian Catholic University through the Indigenous Higher Education Centres located in Adelaide (Yunggorendi First Nations Centre) and Brisbane (Weemala Indigenous Unit) (Bunda and White 2009). At the beginning of the project, two levels of governance were established: a Circle of Senior Indigenous Women from the higher education sector, and a Steering Committee of Senior Executive Women from partner universities. The Circle of Senior Indigenous Women included experts in the fields of learning and teaching, scholarship, administration and management, and community engagement. The Circle’s members were: • Professor Wendy Brady, Charles Darwin University • Dr Jackie Huggins, University of Queensland • Ms Angela Leitch, Education Queensland • Professor Aileen Moreton-Robinson, Queensland University of Technology • Dr Bronwyn Fredericks, Queensland University of Technology and Monash University The Steering Committee members were: • Professor Gabrielle McMullen, Australian Catholic University • Professor Marie Emmit, Australian Catholic University • Professor Faith Trent, Flinders University • Dr Jane Robbins, Flinders University The two levels of governance provided advice to the project leaders throughout the project. Three of these women share their reflections in this paper.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
It’s a pleasure for me to be penning my first President’s Message for the AITPM Newsletter. I am eagerly looking forward to serving the Institute and members over the coming couple of years. First though, I’d like to congratulate Andrew Hulse for steering the good ship AITPM over the past two years, bringing so many initiatives to the fore, including the Certified Transport Planner (CTP), stronger ties with other organisations and agencies such as IPENZ and Austroads, mutually beneficial sponsorship arrangements, and sharing his enthusiasm towards the Thunderbirds. Personally and largely thanks to my kids’ domination of the TV I’m a bit keener on the other great British sixties sci-fi classic, Doctor Who. Maybe we can generate a “favourite Doctor” dialogue in the Newsletter.
Resumo:
The combination of alcohol and driving is a major health and economic burden to most communities in industrialised countries. The total cost of crashes for Australia in 1996 was estimated at approximately 15 billion dollars and the costs for fatal crashes were about 3 billion dollars (BTE, 2000). According to the Bureau of Infrastructure, Transport and Regional Development and Local Government (2009; BITRDLG) the overall cost of road fatality crashes for 2006 $3.87 billion, with a single fatal crash costing an estimated $2.67 million. A major contributing factor to crashes involving serious injury is alcohol intoxication while driving. It is a well documented fact that consumption of liquor impairs judgment of speed, distance and increases involvement in higher risk behaviours (Waller, Hansen, Stutts, & Popkin, 1986a; Waller et al., 1986b). Waller et al. (1986a; b) asserts that liquor impairs psychomotor function and therefore renders the driver impaired in a crisis situation. This impairment includes; vision (degraded), information processing (slowed), steering, and performing two tasks at once in congested traffic (Moskowitz & Burns, 1990). As BAC levels increase the risk of crashing and fatality increase exponentially (Department of Transport and Main Roads, 2009; DTMR). According to Compton et al. (2002) as cited in the Department of Transport and Main Roads (2009), crash risk based on probability, is five times higher when the BAC is 0.10 compared to a BAC of 0.00. The type of injury patterns sustained also tends to be more severe when liquor is involved, especially with injuries to the brain (Waller et al., 1986b). Single and Rohl (1997) reported that 30% of all fatal crashes in Australia where alcohol involvement was known were associated with Breadth Analysis Content (BAC) above the legal limit of 0.05gms/100ml. Alcohol related crashes therefore contributes to a third of the total cost of fatal crashes (i.e. $1 billion annually) and crashes where alcohol is involved are more likely to result in death or serious injury (ARRB Transport Research, 1999). It is a major concern that a drug capable of impairment such as is the most available and popular drug in Australia (Australian Institute of Health and Welfare, 2007; AIHW). According to the AIHW (2007) 89.9% of the approximately 25,000 Australians over the age of 14 surveyed had consumed at some point in time, and 82.9% had consumed liquor in the previous year. This study found that 12.1% of individuals admitted to driving a motor vehicle whilst intoxicated. In general males consumed more liquor in all age groups. In Queensland there were 21503 road crashes in 2001, involving 324 fatalities and the largest contributing factor was alcohol and or drugs (Road Traffic Report, 2001). 23438 road crashes in 2004, involving 289 fatalities and the largest contributing factor was alcohol and or drugs (DTMR, 2009). Although a number of measures such as random breath testing have been effective in reducing the road toll (Watson, Fraine & Mitchell, 1995) the recidivist drink driver remains a serious problem. These findings were later supported with research by Leal, King, and Lewis (2006). This Queensland study found that of the 24661 drink drivers intercepted in 2004, 3679 (14.9%) were recidivists with multiple drink driving convictions in the previous three years covered (Leal et al., 2006). The legal definition of the term “recidivist” is consistent with the Transport Operations (Road Use Management) Act (1995) and is assigned to individuals who have been charged with multiple drink driving offences in the previous five years. In Australia relatively little attention has been given to prevention programs that target high-risk repeat drink drivers. However, over the last ten years a rehabilitation program specifically designed to reduce recidivism among repeat drink drivers has been operating in Queensland. The program, formally known as the “Under the Limit” drink driving rehabilitation program (UTL) was designed and implemented by the research team at the Centre for Accident Research and Road Safety in Queensland with funding from the Federal Office of Road Safety and the Institute of Criminology (see Sheehan, Schonfeld & Davey, 1995). By 2009 over 8500 drink-drivering offenders had been referred to the program (Australian Institute of Crime, 2009).
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.
Resumo:
This protocol represents an attempt to assist in the instruction of teamwork assessment for first-year students across QUT. We anticipate that teaching staff will view this protocol as a generic resource in teamwork instruction, processes and evaluation. Teamwork has been acknowledged as a problematic practice at QUT while existing predominantly in importance amongst graduate capabilities for all students at this institution. This protocol is not an extensive document on the complexities and dynamics of teamwork processes, but instead presents itself as a set of best practice guidelines and recommendations to assist in team design, development, management, support and assessment. It is recommended that this protocol be progressively implemented across QUT, not only to attain teamwork teaching consistency, but to address and deal with the misconceptions and conflict around the importance of the teamwork experience. The authors acknowledge the extensive input and contributions from a Teamwork Steering Committee selected from academic staff and administrative members across the institution. As well, we welcome feedback and suggestions to both fine tune and make inclusive those strategies that staff believe add to optimal teamwork outcomes.