933 resultados para Statistical factora analysis
Resumo:
Caption title.
Resumo:
Contribution from Bureau of home economics in cooperation with Works progress administration.
Resumo:
Reproduced from typewritten copy.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 185-187.
Resumo:
The compelling quality of the Global Change simulation study (Altemeyer, 2003), in which high RWA (right-wing authoritarianism)/high SDO (social dominance orientation) individuals produced poor outcomes for the planet, rests on the inference that the link between high RWA/SDO scores and disaster in the simulation can be generalized to real environmental and social situations. However, we argue that studies of the Person × Situation interaction are biased to overestimate the role of the individual variability. When variables are operationalized, strongly normative items are excluded because they are skewed and kurtotic. This occurs both in the measurement of predictor constructs, such as RWA, and in the outcome constructs, such as prejudice and war. Analyses of normal linear statistics highlight personality variables such as RWA, which produce variance, and overlook the role of norms, which produce invariance. Where both normative and personality forces are operating, as in intergroup contexts, the linear analysis generates statistics for the sample that disproportionately reflect the behavior of the deviant, antinormative minority and direct attention away from the baseline, normative position. The implications of these findings for the link between high RWA and disaster are discussed.
Resumo:
Purpose: To evaluate the clinical features, treatment, and outcomes of a cohort of patients with ocular adnexal lymphoproliferative disease classified according to the World Health Organization modification of the Revised European-American Classification of Lymphoid neoplasms and to perform a robust statistical analysis of these data. Methods: Sixty-nine cases of ocular adnexal lymphoproliferative disease, seen in a tertiary referral center from 1992 to 2003, were included in the study. Lesions were classified by using the World Health Organization modification of the Revised European-American Classification of Lymphoid neoplasms classification. Outcome variables included disease-specific Survival, relapse-free survival, local control, and distant control. Results: Stage IV disease at presentation, aggressive lymphoma histology, the presence of prior or concurrent systemic lymphoma at presentation, and bilateral adnexal disease were significant predictors for reduced disease-specific survival, local control, and distant control. Multivariate analysis found that aggressive histology and bilateral adnexal disease had significantly reduced disease-specific Survival. Conclusions: The typical presentation of adnexal lymphoproliferative disease is with a painless mass, swelling, or proptosis; however, pain and inflammation occurred in 20% and 30% of patients, respectively. Stage at presentation, tumor histology, primary or secondary status, and whether the process was unilateral or bilateral were significant variables for disease outcome. In this study, distant spread of lymphoma was lower in patients who received greater than 20 Gy of orbital radiotherapy.
Resumo:
We have undertaken two-dimensional gel electrophoresis proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of gel-based experiments not all protein spots are detected across all samples in an experiment, and hence datasets are invariably incomplete. New approaches are therefore required for the analysis of such graduated datasets. We approached this problem in two ways. Firstly, we applied a missing value imputation technique to calculate missing data points. Secondly, we combined a singular value decomposition based hierarchical clustering with the expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have shown that while imputation of missing data was a useful method to improve the statistical analysis of such data sets, this was of limited use in differentiating between the samples investigated, and highlighted a small number of candidate proteins for further investigation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sparse code division multiple access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of nonzero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code. © 2007 IOP Publishing Ltd.
Resumo:
This book is aimed primarily at microbiologists who are undertaking research and who require a basic knowledge of statistics to analyse their experimental data. Computer software employing a wide range of data analysis methods is widely available to experimental scientists. The availability of this software, however, makes it essential that investigators understand the basic principles of statistics. Statistical analysis of data can be complex with many different methods of approach, each of which applies in a particular experimental circumstance. Hence, it is possible to apply an incorrect statistical method to data and to draw the wrong conclusions from an experiment. The purpose of this book, which has its origin in a series of articles published in the Society for Applied Microbiology journal ‘The Microbiologist’, is an attempt to present the basic logic of statistics as clearly as possible and therefore, to dispel some of the myths that often surround the subject. The 28 ‘Statnotes’ deal with various topics that are likely to be encountered, including the nature of variables, the comparison of means of two or more groups, non-parametric statistics, analysis of variance, correlating variables, and more complex methods such as multiple linear regression and principal components analysis. In each case, the relevant statistical method is illustrated with examples drawn from experiments in microbiological research. The text incorporates a glossary of the most commonly used statistical terms and there are two appendices designed to aid the investigator in the selection of the most appropriate test.