984 resultados para Split-brain patient
Resumo:
Introduction: mild head trauma (MHT) is defined as a transient neurological deficit after trauma with a history of impairment or loss of consciousness lasting less than 15 min and/or posttraumatic amnesia, and a Glasgow Coma Scale between 13 and 15 on hospital admission. We evaluated 50 MHT patients 18 months after the trauma, addressing signs and symptoms of post-concussion syndrome, quality of life and the presence of anxiety and depression. We correlate those findings with the S100B protein levels and cranial CT scan performed at hospital admission after the trauma. Method: patients were asked to fill out questionnaires to assess quality of life (SF36), anxiety and depression (HADS), and signs and symptoms of post-concussion syndrome. For the control group, we asked the patient`s household members, who had no history of head trauma of any type, to answer the same questionnaires for comparison. Results: total quality of life index for patients with MHT was 58.16 (+/-5), lower than the 73.47 (+/-4) presented by the control group. Twenty patients (55.2%) and four (11.1%) controls were depressed. Seventeen patients (47.2%) presented anxiety, whereas only eight (22.2%) controls were considered anxious. Victims of MHT complained more frequently of loss of balance, dry mouth, pain in the arms, loss of memory and dizziness than their respective controls (p < 0.05). We found no correlation between the presence of these signs and symptoms, quality of life, presence of anxiety and depression with S100B protein levels or with presence of injury in the cranial CT performed at hospital admission. Conclusion: MHT is associated with a higher incidence of post-concussion syndrome symptoms, lower quality of life and anxiety than their respective controls even 18 months after the trauma. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.
Resumo:
The aim of this study was to highlight the challenges for early diagnosis and the difficulties observed in surgical treatment of patients with transsphenoidal meningoencephalocele associated with cleft lip and/or palate. We evaluated six male patients treated over the course of 4 years. Five patients presented encephalic herniation with nonfunctional brain tissue; one of these presented herniation of the pituitary gland and cerebral ventricles. All the patients received surgical treatment for the cleft lip and/or palate. Only one patient underwent repair of the meningoencephalocele, via nasal endoscopy. There were no postprocedural clinical or surgical complications. The tendency is to avoid neurosurgery, opting for periodic follow-up with magnetic resonance imaging. In the presence of cleft palate, palatoplasty is essential to protect the meningoencephalocele.
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
An aggregate-forming coccus, isolated twice as the predominant microorganism in sputa from a cystic fibrosis patient on consecutive days, was shown to belong to the species Lautropia mirabilis on the bases of similarities of 16S rRNA gene sequences and phenotype. These isolates of L. mirabilis appear to be the first reported from a patient with cystic fibrosis and outside of Denmark.
Resumo:
Gonadotropin-dependent, or central, precocious puberty is caused by early maturation of the hypothalamic-pituitary-gonadal axis. In girls, this condition is most often idiopathic. Recently, a G protein-coupled receptor, GPR54, and its ligand, kisspeptin, were described as an excitatory neuroregulator system for the secretion of gonadotropin-releasing hormone (GnRH). In this study, we have identified an autosomal dominant GPR54 mutation - the substitution of proline for arginine at codon 386 (Arg386Pro) - in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies). In vitro studies have shown that this mutation leads to prolonged activation of intracellular signaling pathways in response to kisspeptin. The Arg386Pro mutant appears to be associated with central precocious puberty.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ovarian vasculitis is a rare complication seen in the reproductive system and has been described in only one patient with lupus and a few patients with other rheumatic conditions (polyarteritis nodosa, giant cell arteritis, scleroderma). Three additional cases following gynecology procedures have also been reported. We report the second case of a patient with systemic lupus erythematosus, who developed ovarian vasculitis. The diagnosis was made at the age of 12 and confirmed by laparoscopy and histopathology in the presence of disease activity. She experienced late menarche at the age of 16, and she experienced a good clinical evolution after disease treatment with regular menstrual cycles and normal levels of sexual hormones. Lupus (2009) 18, 1313-1315.
Resumo:
Patients with diabetes mellitus (DM) have high platelet reactivity and are at increased risk of ischaemic events and bleeding post-acute coronary syndromes (ACS). In the PLATelet inhibition and patient Outcomes (PLATO) trial, ticagrelor reduced the primary composite endpoint of cardiovascular death, myocardial infarction, or stroke, but with similar rates of major bleeding compared with clopidogrel. We aimed to investigate the outcome with ticagrelor vs. clopidogrel in patients with DM or poor glycaemic control. We analysed patients with pre-existing DM (n = 4662), including 1036 patients on insulin, those without DM (n = 13 951), and subgroups based on admission levels of haemoglobin A1c (HbA1c; n = 15 150). In patients with DM, the reduction in the primary composite endpoint (HR: 0.88, 95% CI: 0.76-1.03), all-cause mortality (HR: 0.82, 95% CI: 0.66-1.01), and stent thrombosis (HR: 0.65, 95% CI: 0.36-1.17) with no increase in major bleeding (HR: 0.95, 95% CI: 0.81-1.12) with ticagrelor was consistent with the overall cohort and without significant diabetes status-by-treatment interactions. There was no heterogeneity between patients with or without ongoing insulin treatment. Ticagrelor reduced the primary endpoint, all-cause mortality, and stent thrombosis in patients with HbA1c above the median (HR: 0.80, 95% CI: 0.70-0.91; HR: 0.78, 95% CI: 0.65-0.93; and HR: 0.62, 95% CI: 0.39-1.00, respectively) with similar bleeding rates (HR: 0.98, 95% CI: 0.86-1.12). Ticagrelor, when compared with clopidogrel, reduced ischaemic events in ACS patients irrespective of diabetic status and glycaemic control, without an increase in major bleeding events.
Resumo:
The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.
Resumo:
Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.
Resumo:
Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.