363 resultados para Spinacia oleracea


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this study was to determine if isozyme systems can be used as markers of genetic deterioration in Brassicaceae seed accessions under different storage conditions. Seed samples of Brassica oleracea, Cardaria draba, Erysimum cheiri, Iberis sempervirens and Rapistrum rugosum were stored for periods of 9 to 30 years at -10°C and 3-4% seed moisture content (long-term or LT conditions) and at 5°C and uncontrolled relative humidity (RH) (short-term or ST conditions). Starch Gel Electrophoresis (SGE) was used to analyse six enzyme systems oriented to determine the genetic deterioration of the accessions studied. The results obtained show that long-term storage conditions (LT) were extremely effective in maintaining the viability of seeds of the five Brassicaceae species studied. The final germination percentages reached by seeds from LT samples ranged from 75 to 100%, while the germination percentages of ST samples (except for B. oleracea) were very low (from 0 to 10%). Similar conclusions were obtained studying the integrity of electrophoretic bands for several isozymes. Two enzyme systems were of special interest: malate dehydrogenase and alcohol dehydrogenase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane proteins of peripheral light-harvesting complexes (LHCs) bind chlorophylls and carotenoids and transfer energy to the reaction centers for photosynthesis. LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar in that they have three transmembrane regions and several highly conserved Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes, Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes, and zeaxanthin in rhodophytes. The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules. The pigments typical of a chlorophyte (Spinacea oleracea), a chromophyte (Thallasiosira fluviatilis), and a dinophyte (Prorocentrum micans) were found to functionally bind to this protein as evidenced by their participation in energy transfer to Chl a, the terminal pigment. This is a demonstration of a functional relatedness of rhodophyte and higher plant LHCs. The results suggest that eight Chl-binding sites per polypeptide are an ancestral trait, and that the flexibility to bind various Chl and carotenoid pigments may have been retained throughout the evolution of LHCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus and within the Golgi apparatus is facilitated by COP (coat protein)-coated vesicles. Their existence in plant cells has not yet been demonstrated, although the GTP-binding proteins required for coat formation have been identified. We have generated antisera against glutathione-S-transferase-fusion proteins prepared with cDNAs encoding the Arabidopsis Sec21p and Sec23p homologs (AtSec21p and AtSec23p, respectively). The former is a constituent of the COPI vesicle coatomer, and the latter is part of the Sec23/24p dimeric complex of the COPII vesicle coat. Cauliflower (Brassica oleracea) inflorescence homogenates were probed with these antibodies and demonstrated the presence of AtSec21p and AtSec23p antigens in both the cytosol and membrane fractions of the cell. The membrane-associated forms of both antigens can be solubilized by treatments typical for extrinsic proteins. The amounts of the cytosolic antigens relative to the membrane-bound forms increase after cold treatment, and the two antigens belong to different protein complexes with molecular sizes comparable to the corresponding nonplant coat proteins. Sucrose-density-gradient centrifugation of microsomal cell membranes from cauliflower suggests that, although AtSec23p seems to be preferentially associated with ER membranes, AtSec21p appears to be bound to both the ER and the Golgi membranes. This could be in agreement with the notion that COPII vesicles are formed at the ER, whereas COPI vesicles can be made by both Golgi and ER membranes. Both AtSec21p and AtSec23p antigens were detected on membranes equilibrating at sucrose densities equivalent to those typical for in vitro-induced COP vesicles from animal and yeast systems. Therefore, a further purification of the putative plant COP vesicles was undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoplastic α-glucosidases occur widely in plants but their function is unknown because appropriate substrates in the apoplast have not been identified. Arabidopsis contains at least three α-glucosidase genes; Aglu-1 and Aglu-3 are sequenced and Aglu-2 is known from six expressed sequence tags. Antibodies raised to a portion of Aglu-1 expressed in Escherichia coli recognize two proteins of 96 and 81 kD, respectively, in vegetative tissues of Arabidopsis, broccoli (Brassica oleracea L.), and mustard (Brassica napus L.). The acidic α-glucosidase activity from broccoli flower buds was purified using concanavalin A and ion-exchange chromatography. Two active fractions were resolved and both contained a 96-kD immunoreactive polypeptide. The N-terminal sequence from the 96-kD broccoli α-glucosidase indicated that it corresponds to the Arabidopsis Aglu-2 gene and that approximately 15 kD of the predicted N terminus was cleaved. The 81-kD protein was more abundant than the 96-kD protein, but it was not active with 4-methylumbelliferyl-α-d-glucopyranoside as the substrate and it did not bind to concanavalin A. In situ activity staining using 5-bromo-4-chloro-3-indolyl-α-d-glucopyranoside revealed that the acidic α-glucosidase activity is predominantly located in the outer cortex of broccoli stems and in vascular tissue, especially in leaf traces.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nectria brassicae Ellis & Sacc. in Sacc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence indicates that cruciferous vegetables are protective against a range of cancers with glucosinolates and their breakdown products considered the biologically active constituents. To date, epidemiological studies have not investigated the intakes of these constituents due to a lack of food composition databases. The aim of the present study was to develop a database for the glucosinolate content of cruciferous vegetables that can be used to quantify dietary exposure for use in epidemiological studies of diet-disease relationships. Published food composition data sources for the glucosinolate content of cruciferous vegetables were identified and assessed for data quality using established criteria. Adequate data for the total glucosinolate content were available from eighteen published studies providing 140 estimates for forty-two items. The highest glucosinolate values were for cress (389 mg/100 g) while the lowest values were for Pe-tsai chinese cabbage (20 mg/100 g). There is considerable variation in the values reported for the same vegetable by different studies, with a median difference between the minimum and maximum values of 5.8-fold. Limited analysis of cooked cruciferous vegetables has been conducted; however, the available data show that average losses during cooking are approximately 36 %. This is the first attempt to collate the available literature on the glucosinolate content of cruciferous vegetables. These data will allow quantification of intakes of the glucosinolates, which can be used in epidemiological studies to investigate the role of cruciferous vegetables in cancer aetiology and prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host-searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA-treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA-treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect-feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host.. the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8 h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24 h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes front newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postharvest senescence in broccoli (Brassica oleracea L. var Italica) florets results in phenotypic changes similar to those seen in developmental leaf senescence. To compare these two processes in more detail, we investigated molecular and biochemical changes in broccoli florets stored at two different temperatures after harvest. We found that storage at cooler temperatures delayed the symptoms of senescence at both the biochemical and gene expression levels. Changes in key biochemical components (lipids, protein, and chlorophyll) and in gene expression patterns occurred in the harvested tissue well before any visible signs of senescence were detected. Using previously identified senescence-enhanced genes and also newly isolated, differentially expressed genes, we found that the majority of these showed a similar enhancement of expression in postharvest broccoli as in developmental leaf senescence. At the biochemical level, a rapid loss of membrane fatty acids was detected after harvest, when stored at room temperature. However, there was no corresponding increase in levels of lipid peroxidation products. This, together with an increased expression of protective antioxidant genes, indicated that, in the initial stages of postharvest senescence, an orderly dismantling of the cellular constituents occurs, using the available lipid as an energy source. Postharvest changes in broccoli florets, therefore, show many similarities to the processes of developmental leaf senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sunscreen use is the most common photoprotection alternative used by the population, and so these products should offer improved protection with broad - spectrum, UVA and UVB protection . Vegetal substances have recently been considered as resources for sunscreen formulations due to their UV spectrum absorption and antioxidant properties. The Euterpe oleracea Mart., popularly known as açai, in its che mical composition contain polyphenols compounds, such as anthocyanins and flavonoids , to which antioxidant properties have been attributed . The aim of this work was to develop O/W sunscreens emulsions con taining açai glycolic extract ( AGE) and to evaluate both their physical stability , safety and photoprotective efficacy. The safety of the extract was evaluated by in vitro phototoxicity and cytotoxicity tests. Emulsions containing AGE and sunscreens were formulated using different types and concentrations o f polymeric surfactant (Acrylates/C 10 - 30 Alkyl Acrylate Crosspolymer and Sodium Polyacrylate). The influence of two rheology modifiers (Polyacrylamide (and) C13 - 14/Isoparaffin (and) Laureth - 7 and Carbomer) on the stability was also investigated. Physical stability was evaluated by preliminary and accelerated studies. The macroscopic analyses, pH value and electrical conductivity determinations and rheological behavior were evaluated at different time intervals . The in vivo Sun Protect Factor ( SPF ) was determined according to the International Sun Protection Factor Test Method – 2006 and UVA Protection Factor (FPUVA), wavelength critical and reason SPF/FPUVA were performed according to the method Colipa 2011. The extract did not present cytotoxic ity and phototoxic ity . The stable emulsion containing 5% glycolic extract of açai and 1.0% of sodium poliyacrylate showed pseudoplastic and thixotropic behavior . The sunscreen emulsion containing açai glycolic extract showed a SPF 25.3 and PF - UVA = 14.97. Whe n açai glycolic extract was added in the emulsion sunscreen, no significant increase in the in vivo SPF and FPUVA values were observed. This emulsion showed 1.69 of the SPF/PF - UVA ratio and a critical wavelength value of 378 nm, so may therefore be conside red a sunscreen with UVA and UVB protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r(2) = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars.