982 resultados para Space-Frequency Block Codes
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
In natural estuaries, the predictions of scalar dispersion are rarely predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted continuously at high frequency for 50 hours in the upper zone of a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such shallow water depths (less than 0.4 m at low tides), and a thorough post-processing technique was applied. In addition, some experiments were conducted in laboratory under controlled conditions using water and soil samples collected in the estuary to test the relationship between acoustic backscatter strength and suspended sediment load. A striking feature of the field data set was the large fluctuations in all turbulence characteristics during the tidal cycle, including the suspended sediment flux. This feature was rarely documented.
Resumo:
In small estuaries, the predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure. Herein detailed turbulence measurements and suspended sediment concentrations were conducted simultaneously and continuously at high-frequency for 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. The data analyses provided an unique characterisation of the turbulent mixing processes and suspended sediment fluxes. The turbulence was neither homogeneous nor isotropic, and it was not a Gaussian process. The integral time scales for turbulence and suspended sediment concentration were about equal during flood tides, but differed significantly during ebb tides. The field experiences showed that the turbulence measurements must be conducted at high-frequency to characterise the small eddies and the viscous dissipation process, while a continuous sampling was necessary to characterise the time-variations of the instantaneous velocity field, Reynolds stress tensor and suspended sediment flux during the tidal cycles.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).
Resumo:
The interference in a phase space algorithm of Schleich and Wheeler [Nature 326, 574 (1987)] is extended to the hyperbolic space underlying the group SU(1,1). The extension involves introducing the notion of weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the generators of su(1,1) thus obtained are found to be in excellent agreement with the numerical results.[S1050-2947(98)08602-8].
Resumo:
The nonlinear response of a chaotic system to a chaotic variation in a system parameter is investigated experimentally. Clear experimental evidence of frequency entrainment of the chaotic oscillations is observed. We show that analogous to the frequency locking between coupled periodic oscillations, this effect is generic for coupled chaotic systems.
Resumo:
We show that a two-level atom interacting with an extremely weak squeezed vacuum can display resonance fluorescence spectra that are qualitatively different to those that can be obtained using fields with a classical analogue. We consider first the free space situation with monochromatic excitation, and then discuss a bichromatically driven two-level atom in a cavity as a practical scenario for experimentally detecting the anomalous features predicted. We show that in the bad cavity limit, the anomalous spectral features appear for a weak squeezed vacuum and large frequency differences of the bichromatic field, conditions which are easily accessible in laboratories. The advantage of bichromatic, as opposed to monochromatic, excitation is that there is no coherent scattering at line centre which could obscure the observations. A scaling law is derived, N similar to Omega(4) which relates the squeezed photon number to the Rabi frequency at which the anomalous features appear. (C) 1998 Elsevier Science B.V.
Resumo:
Frequency, recency, and type of prior exposure to very low-and high-frequency words were manipulated in a 3-phase (i.e., familiarization training, study, and test) design. Increasing the frequency with which a definition for a very low-frequency word was provided during familiarization facilitated the word's recognition in both yes-no (Experiment 1) and forced-choice paradigms (Experiment 2). Recognition of very low-frequency words not accompanied by a definition during familiarization first increased, then decreased as familiarization frequency increased (Experiment I). Reasons for these differences were investigated in Experiment 3 using judgments of recency and frequency. Results suggested that prior familiarization of a very low-frequency word with its definition may allow a more adequate episodic representation of the word to be formed during a subsequent study trial. Theoretical implications of these results for current models of memory are discussed.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
Six right-handed subjects performed rhythmic flexion and extension movements of the index finger in time with an auditory metronome. On each block of trials, the wrist of the response hand was placed in a extended, neutral or flexed position. In the flex-on-the-beat condition, subjects were instructed to coordinate maximum excursion in the direction of finger flexion with each beat of the metronome. In the extend-on-the-beat condition, subjects were instructed to coordinate maximum excursion in the direction of finger extension with each beat of the metronome. The frequency of the metronome was increased from 2.00 Hz to 3.75 Hz in 8 steps (8 s epochs) of 0.25 Hz. During trials prepared in the extend-on-the-beat pattern, all subjects exhibited transitions to either a flex-on-the-beat pattern or to phase wandering as the frequency of pacing was increased. The time at which these transitions occurred was reliably influenced by the position of the wrist. Four subjects exhibited qualitative departures from the flex-on-the-beat pattern at pacing frequencies that were greater than those at which the extend-on-the-beat pattern could be maintained. The lime at which these departures occurred was not influenced by the position of the wrist. These results are discussed with reference to the constraints imposed on the coordination dynamics by the intrinsic properties of the neuromuscular-skeletal system.