958 resultados para Southern Sydney Basin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data are reported on structure of sections, chemical composition, and age of volcano-sedimentary and volcanic rocks from the Sinii Utes Depression in the Southern Primorye region. The Sinii Utes Depression is filled with two sequences: the lower sequence composed of sedimentary-volcanogenic coaliferous rocks (the stratotype of the Sinii Utes Formation) and the upper sequence consisting of tephroid with overlying basalts. This work considers chemical composition and problems of K-Ar dating of basalts. The uppermost basaltic flow has K-Ar age 22.0±1.0 Ma. The dates obtained for the middle and upper parts of lava flows are underestimated. It is explained by their heating due to combustion of brown coals of the Sinii Utes Formation underlying the lava flow. Calculations show that argon could only partly have been removed from the basalts owing to conductive heat transfer and was lost largely due to infiltration of hot gases in heterogeneous fissured medium. Basaltic volcanism on continental margins of the southern Primorye region and the adjacent Korean and Chinese areas at the Oligocene-Miocene boundary preceded Early-Middle Miocene spreading and formation of the Sea of Japan basin. Undifferentiated moderately alkaline basalts of intraplate affinity developed in the Amba Depression and some other structures of the southern Primorye region and intraplate alkali basalts of the Phohang Graben in the Korean Peninsula serve as indicators of incipient spreading regime in the Sea of Japan. Potassic basalt-trachybasalt eruptions occurred locally in riftogenic depressions and shield volcanoes. In some structures this volcanism was terminated by eruptions of intermediate and acid lavas. Such evolution of volcanism is explained by selective contamination of basaltic melts during their interaction with crustal acid material and generation of acid anatectic melts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of analysis of satellite and field data collected in Russian Arctic Seas maps of distribution of primary production for different months of the vegetation period were compiled. These maps were used to estimate annual primary production of organic carbon: 55 million tons in the Barents Sea; about 20 million tons in the Kara Sea; 10-15 million tons in the Laptev Sea and in the East Siberian Sea, 42 million tons in the Chukchi Sea. In the central and eastern parts of the Barents Sea during the vegetation period values of primary production decreased by factor >5 (from >500 to <100 mg C/m**2/day). By reviewing results of studies with sediment traps vertical fluxes of organic carbon in different regions of the Arctic Basin were estimated. Significant temporal variability of Corg fluxes with maxima during phytoplankton blooms (by 830 mg C/m**2/day) was noted. Typical summer fluxes of Corg are 10-40 mg C/m**2/day in the southern Barents Sea, 1-10 mg C/m**2/day in the northern Barents Sea and in the Kara Sea, and up to 370 mg C/m**2/day in the zone of marginal filters of the Ob and Yenisey rivers.