957 resultados para Solar Photovoltaic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a monitoring system devoted to small sized photovoltaic (PV) power plants. The system is characterized by: a high level of integration; a low cost, when compared to the cost of the PV system to be monitored; and an easy installation in the majority of the PV plants with installed power of some kW. The system is able to collect, store, process and display electrical and meteorological parameters that are crucial when monitoring PV facilities. The identification of failures in the PV system and the elaboration of performance analysis of such facilities are other important characteristics of the developed system. The access to the information about the monitored facilities is achieved by using a web application, which was developed with a focus on the mobile devices. In addition, there is the possibility of an integration between the developed monitoring system and the central supervision system of Martifer Solar (a company focused on the development, operation and maintenance of PV systems).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fact that most of the large scale solar PV plants are built in arid and semi-arid areas where land availability and solar radiation is high, it is expected the performance of the PV plants in such locations will be affected significantly due to high cell temperature as well as due to soiling. Therefore, it is essential to study how the different PV module technologies will perform in such geographical locations to ensure a consistent and reliable power delivery over the lifetime of the PV power plants. As soiling is strongly dependent on the climatic conditions of a particular location a test station, consisted of about 24 PV modules and a well-equipped weather station, was built within the fences of Scatec’s 75 MW Kalkbult solar PV plant in South Africa. This study was performed to a better understand the effect of soiling by comparing the relative power generation by the cleaned modules to the un-cleaned modules. Such knowledge can enable more quantitative evaluations of the cleaning strategies that are going to be implemented in bigger solar PV power plants. The data collected and recorded from the test station has been analyzed at IFE, Norway using a MatLab script written for this thesis project. This thesis work has been done at IFE, Norway in collaboration with Stellenbosch University in South Africa and Scatec Solar a Norwegian independent power producer company. Generally for the polycrystalline modules it is found that the average temperature corrected efficiency during the period of the experiment has been 15.00±0.08 % and for the thin film-CdTe with ARC is 11.52% and for the thin film without ARC is about 11.13% with standard uncertainty of ±0.01 %. Besides, by comparing the initial relative average efficiency of the polycrystalline-Si modules when all the modules have been cleaned for the first time and the final relative efficiency; after the last cleaning schedule which is when all the reference modules E, F, G, and H have been cleaned for the last time it is found that poly3 performs 2 % and 3 % better than poly1 and poly16 respectively, poly13 performs 1 % better than poly15 as well as poly5 and poly12 performs 1 % and 2 % better than poly10 respectively. Besides, poly5 and poly12 performs a 9 % and 11 % better than poly7. Furthermore, there is no change in performance between poly6 and poly9 as well as poly4 and poly15. However, the increase in performance of poly3 to poly1, poly13 to poly15 as well as poly5 and poly12 to poly10 is insignificant. In addition, it is found that TF22 perform 7% better than the reference un-cleaned module TF24 and similarly; TF21 performs 7% higher than TF23. Furthermore, modules with ARC glass (TF17, TF18, TF19, and TF20) shows that cleaning the modules with only distilled water (TF19) or dry-cleaned after cleaned with distilled water(TF20) decreases the performance of the modules by 5 % and 4 % comparing to its respective reference uncleanedmodules TF17 and TF18 respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irradiation is the main component for producing the electricity from solar energy. When obstacles come in between the sun and the PV cell then it doesn’t get sufficient irradiance to produce enough electricity. Shadowing has a great impact on photovoltaic cell. The main fuel of PV cell is solar radiation. Using solar radiation, a photovoltaic cell produces electricity. The shadow on a PV cell decreases the output of the photovoltaic cell. It has been already shown in different papers that shadow effect decreases the output of the PV cell. There are different kinds of shadow effects which are observed, some minimize the PV cell output and some reduce the output to zero. There are different types of shadow based on their effects on the photovoltaic cell. The shadow has also effects depending on whether the PV cells are connected in series connection or in parallel connection. In series when one cell is out of order then the whole series of the PV cells will not work but in parallel connection if one cell is damaged, the others will work because they work independently. According to the output requirement the arrangement of the PV cells are made in series or parallel. Simulink modeling is made for series and parallel connection between two PV cells and the shadow effect is analyzed on one of the PV cells. Using SIMULINK, the shadowing is simulated on the two PV cells, where in one system they are in series and in another system they are in parallel. Slowly the irradiance is decreased to simulate the shadow effect. Simulation of the shadow effect gives an idea about the output of the PV cell system when system has shadow on the PV cells. Here the shadow effect on the two PV cells using series and parallel combinations are simulated and analyzed for understanding the effects on output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a remarkable level of interest in the development of π-conjugated polymers (ICPs) which have been employed, thanks to their promising optical and electronic properties, in numerous applications including photovoltaic cells, light emitting diodes and thin-film transistors. Although high power conversion efficiency can be reached using poly(3-alkylthiophenes) (P3ATs) as electron-donating materials in polymeric solar cells of the Bulk-Heterojunction type (BHJ), their relatively large band gap limits the solar spectrum fraction that can be utilized. The research work described in this dissertation thus concerns the synthesis, characterization and study of the optical and photoactivity properties of new organic semiconducting materials based on polythiophenes. In detail, various narrow band gap polymers and copolymers were developed through different approaches and were characterized by several complementary techniques, such as gel permeation chromatography (GPC), NMR spectroscopy, thermal analyses (DSC, TGA), UV-Vis/PL spectroscopy and cyclic voltammetry (CV), in order to investigate their structural and chemical/photophysical properties. Moreover, the polymeric derivatives were tested as active material in air-processed organic solar cells. The activity has also been devoted to investigate the behavior of polythiophenes with chiral side chain, that are fascinating materials capable to assume helix supramolecular structures, exhibiting optical activity in the aggregated state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims to investigate the fundamental processes governing the performance of different types of photoelectrodes used in photoelectrochemical (PEC) applications, such as unbiased water splitting for hydrogen production. Unraveling the transport and recombination phenomena in nanostructured and surface-modified heterojunctions at a semiconductor/electrolyte interface is not trivial. To approach this task, the work presented here first focus on a hydrogen-terminated p-silicon photocathode in acetonitrile, considered as a standard reference for PEC studies. Steady-state and time-resolved excitation at long wavelength provided clear evidence of the formation of an inversion layer and revealed that the most optimal photovoltage and the longest electron-hole pair lifetime occurs when the reduction potential for the species in solution lies within the unfilled conduction band states. Understanding more complex systems is not as straight-forward and a complete characterization that combine time- and frequency-resolved techniques is needed. Intensity modulated photocurrent spectroscopy and transient absorption spectroscopy are used here on WO3/BiVO4 heterojunctions. By selectively probing the two layers of the heterojunction, the occurrence of interfacial recombination was identified. Then, the addition of Co-Fe based overlayers resulted in passivation of surface states and charge storage at the overlayer active sites, providing higher charge separation efficiency and suppression of recombination in time scales that go from picoseconds to seconds. Finally, the charge carrier kinetics of several different Cu(In,Ga)Se2 (CIGS)-based architectures used for water reduction was investigated. The efficiency of a CIGS photocathode is severely limited by charge transfer at the electrode/electrolyte interface compared to the same absorber layer used as a photovoltaic cell. A NiMo binary alloy deposited on the photocathode surface showed a remarkable enhancement in the transfer rate of electrons in solution. An external CIGS photovoltaic module assisting a NiMo dark cathode displayed optimal absorption and charge separation properties and a highly performing interface with the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays renewable energies are a hot research topic, and the goal is to improve cell efficiency and reduce production costs, aiming to make the use of photovoltaics increasingly widespread and convenient. Monocrystalline silicon solar cells are leaders in the photovoltaic market. However, market-established cutting techniques produce a consistent amount of material waste when cutting ingots into wafers. The“Stress-induced LIft-Off Method” (SLIM) is emerging in recent years as an alternative, more sustainable separation technique, which reduces material loss and can lead to obtaining increasingly thinner wafers, further reducing the required amount of silicon. This thesis presents the micro-characterization of the separated wafers with the SLIM technique. The wafers were obtained with a two-step procedure. First, a layer of defects was induced in the silicon using ultra-short medium-infrared laser pulses. Then, the material was deposited on one of the sides and induced stress in the silicon, such as to further weaken it. In this way, only rapid cooling is required for detachment to occur. The obtained results indicate that the SLIM-cut technique halves the minority carriers’ lifetime. There is no amorphization, crystal disorder or high-pressure phases. However, changes in the Raman spectra suggest that tensile stress may have been produced on these surface layers by the separation process. The AFM topography highlights surface irregularities, which may be removed with a polishing step. The surface also shows laser-modified regions, which are evident in SEM images, but not in AFM topographies, suggesting a charging effect due to electron bombardment. Lastly, the electrical characterization by conductive AFM lacks any changes in the conductive behaviour of the material where the laser-modified areas should be located. In conclusion, these preliminary results are promising to carry out a systematic characterization of this technique of this innovative SLIM technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main referring subjects to the solar energy is how to compare it economically with other sources of energy, as much alternatives as with conventionals (like the electric grid). The purpose of this work was to develop a software which congregates the technical and economic main data to identify, through methods of microeconomic analysis, the commercial viability in the sizing of photovoltaic systems, besides considering the benefits proceeding from the proper energy generation. Considering the period of useful life of the components of the generation system of photovoltaic electricity, the costs of the energy proceeding from the conventional grid had been identified. For the comparison of the conventional sources, electric grid and diesel generation, three scenes of costs of photovoltaic panels and two for the factor of availability of diesel generation had been used. The results have shown that if the cost of the panels is low and the place of installation is more distant of the electric grid, the photovoltaic system becomes the best option.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil). A comparative study involving data from Punta Arenas - Chile (53.2º S), São Martinho da Serra (29.5º S), Padang - Indonesia (0.9ºS), Brussels - Belgium (50.9º N) and Kiyotake - Japan (31.9º N) from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively). The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a re-analysis of the Geneva-Copenhagen survey, which benefits from the infrared flux method to improve the accuracy of the derived stellar effective temperatures and uses the latter to build a consistent and improved metallicity scale. Metallicities are calibrated on high-resolution spectroscopy and checked against four open clusters and a moving group, showing excellent consistency. The new temperature and metallicity scales provide a better match to theoretical isochrones, which are used for a Bayesian analysis of stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shift the peak of the metallicity distribution function around the solar value. From Stromgren photometry we are able to derive for the first time a proxy for [alpha/Fe] abundances, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our revision offers the largest existing kinematically unbiased sample of the solar neighbourhood that contains full information on kinematics, metallicities, and ages and thus provides better constraints on the physical processes relevant in the build-up of the Milky Way disc, enabling a better understanding of the Sun in a Galactic context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4+/-0.3 mu Hz and angular and linear radiuses of 0.6759 +/- 0.0062 mas and 1.010 +/- 0.009 R(circle dot) were estimated. We used these values to derive the mass of the star, 1.02 +/- 0.03 M(circle dot).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We determine the age and mass of the three best solar twin candidates in open cluster M 67 through lithium evolutionary models. Methods. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M 67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. Results. We obtained a very accurate estimation of the mass of our solar analogs in M 67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87(-0.66)(+0.55) Gyr, which is better constrained than former estimates. Conclusions. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M 67 has a solar age within the errors, validating its use as a solar proxy. M 67 is an important cluster when searching for solar twins.