989 resultados para Soil characteristics
Resumo:
Understanding plant trait responses to elevated temperatures in the Arctic is critical in light of recent and continuing climate change, especially because these traits act as key mechanisms in climate-vegetation feedbacks. Since 1992, we have artificially warmed three plant communities at Alexandra Fiord, Nunavut, Canada (79°N). In each of the communities, we used open-top chambers (OTCs) to passively warm vegetation by 1-2 °C. In the summer of 2008, we investigated the intraspecific trait responses of five key species to 16 years of continuous warming. We examined eight traits that quantify different aspects of plant performance: leaf size, specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf carbon concentration, leaf nitrogen concentration, leaf carbon isotope discrimination (LCID), and leaf d15N. Long-term artificial warming affected five traits, including at least one trait in every species studied. The evergreen shrub Cassiope tetragona responded most frequently (increased leaf size and plant height/decreased SLA, leaf carbon concentration, and LCID), followed by the deciduous shrub Salix arctica (increased leaf size and plant height/decreased SLA) and the evergreen shrub Dryas integrifolia (increased leaf size and plant height/decreased LCID), the forb Oxyria digyna (increased leaf size and plant height), and the sedge Eriophorum angustifolium spp. triste (decreased leaf carbon concentration). Warming did not affect d15N, leaf nitrogen concentration, or LDMC. Overall, growth traits were more sensitive to warming than leaf chemistry traits. Notably, we found that responses to warming were sustained, even after many years of treatment. Our work suggests that tundra plants in the High Arctic will show a multifaceted response to warming, often including taller shoots with larger leaves.
Resumo:
Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.
Resumo:
Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.
Resumo:
Climate warming is expected to differentially affect CO2 exchange of the diverse ecosystems in the Arctic. Quantifying responses of CO2 exchange to warming in these ecosystems will require coordinated experimentation using standard temperature manipulations and measurements. Here, we used the International Tundra Experiment (ITEX) standard warming treatment to determine CO2 flux responses to growing-season warming for ecosystems spanning natural temperature and moisture ranges across the Arctic biome. We used the four North American Arctic ITEX sites (Toolik Lake, Atqasuk, and Barrow [USA] and Alexandra Fiord [Canada]) that span 10° of latitude. At each site, we investigated the CO2 responses to warming in both dry and wet or moist ecosystems. Net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem photosynthesis (GEP) were assessed using chamber techniques conducted over 24-h periods sampled regularly throughout the summers of two years at all sites. At Toolik Lake, warming increased net CO2 losses in both moist and dry ecosystems. In contrast, at Atqasuk and Barrow, warming increased net CO2 uptake in wet ecosystems but increased losses from dry ecosystems. At Alexandra Fiord, warming improved net carbon uptake in the moist ecosystem in both years, but in the wet and dry ecosystems uptake increased in one year and decreased the other. Warming generally increased ER, with the largest increases in dry ecosystems. In wet ecosystems, high soil moisture limited increases in respiration relative to increases in photosynthesis. Warming generally increased GEP, with the notable exception of the Toolik Lake moist ecosystem, where warming unexpectedly decreased GEP >25%. Overall, the respiration response determined the effect of warming on ecosystem CO2 balance. Our results provide the first multiple-site comparison of arctic tundra CO2 flux responses to standard warming treatments across a large climate gradient. These results indicate that (1) dry tundra may be initially the most responsive ecosystems to climate warming by virtue of strong increases in ER, (2) moist and wet tundra responses are dampened by higher water tables and soil water contents, and (3) both GEP and ER are responsive to climate warming, but the magnitudes and directions are ecosystem-dependent.
Resumo:
In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates