939 resultados para Sodium iron ethylenediaminetetraacetic acid
Resumo:
Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase_M75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr_3370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M(W) 27,772Da). Circular dichroism spectroscopy of EfeM indicated a mainly alpha-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.
Resumo:
Measurements of weighted dietary intakes and plasma determinations of albumin, iron, zinc, ascorbic acid and TIBC were carried out on twenty female multiple sclerosis patients in a long-stay hospital for disabled people. The group included ten patients with a recent history of pressure sores, closely matched with ten patients without pressure sores. Mean daily intake of carbohydrate was found to be higher in the non-pressure sore group whilst intake of zinc was lower in this group. Intakes of all other nutrients were comparable between the two groups. For both groups, intakes of energy, folate, vitamin D, iron and zinc were less than recommended values. Mean plasma levels of albumin and iron were towards the lower limit of the normal range, whilst that for zinc was considerably less than the normal range. Plasma TIBC was slightly above the normal range. Levels of plasma iron and zinc were significantly lower in the pressure sore group. The data indicate that severely disabled hospitalized patients with multiple sclerosis may be at risk of poor nutritional status. The results suggest that in the presence of pressure sores, there are increased requirements for specific nutrients, notably zinc and iron. Consideration is given to the possible value of supplementation of these individuals.
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments(n548 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3mg/kg total Se as SY and SS, respectively] and SY-H [0.45mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P,0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P,0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.
Resumo:
Low density lipoprotein (LDL) has recently been shown to be oxidised by iron within the lysosomes of macrophages and this is a novel potential mechanism for LDL oxidation in atherosclerosis. Our aim was to characterise the chemical and physical changes induced in LDL by iron at lysosomal pH and to investigate the effects of iron chelators and α-tocopherol on this process. LDL was oxidised by iron at pH 4.5 and 37°C and its oxidation monitored by spectrophotometry and HPLC. LDL was oxidised effectively by FeSO4 (5-50 µM) and became highly aggregated at pH 4.5, but not at pH 7.4. Cholesteryl esters decreased and after a pronounced lag 7-ketocholesterol increased greatly. Total hydroperoxides (measured by tri-iodide assay) increased up to 24 h and then decreased only slowly. The lipid composition after 12 h at pH 4.5 and 37°C was similar to that of LDL oxidised by copper at pH 7.4 and 4°C, i.e. rich in hydroperoxides but low in oxysterols. Previously oxidised LDL aggregated rapidly and spontaneously at pH 4.5, but not at pH 7.4. Ferrous was much more effective than ferric iron at oxidising LDL when added after the oxidation was already underway. The iron chelators diethylenetriaminepentaacetic acid and, to a lesser extent, desferrioxamine inhibited LDL oxidation when added during its initial stages, but were unable to prevent LDL aggregating after it had been partially oxidised. Surprisingly, desferrioxamine increased the rate of LDL modification when added late in the oxidation process. α-Tocopherol enrichment of LDL initially increased the oxidation of LDL, but inhibited it later. The presence of oxidised and highly aggregated lipid within lysosomes has the potential to perturb the function of these organelles and to promote atherosclerosis.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Resumo:
The effects of iron ions on dielectric properties of lithium sodium phosphate glasses were studied by non-usual, fast and non-destructive microwave techniques. The dielectric constant (epsilon`). insertion loss (L) and microwave absorption spectra (microwave response) of the selected glass system xFe(2)O(3)center dot(1 - x)(50P(2)O5 center dot 25Li(2)O center dot 25Na(2)O), being x = 0, 3, 6, ....,15 expressed in mol.%, were investigated. The dielectric constant of the samples was investigated at 9.00 GHz using the shorted-line method (SLM) giving the minimum value of epsilon` = 2.10 +/- 0.02 at room temperature, and increasing further with x, following a given law. It was observed a gradual increasing slope Of E in the temperature range of 25 <= t <= 330 degrees C, at the frequency of 9.00 GHz. Insertion loss (measured at 9.00 GHz) and measurements of microwave energy attenuation, at frequencies ranging from 8.00 to 12.00 GHz were also studied as a function of iron content in the glass samples. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new acylamino acid, bunodosine 391 (BDS 391), was isolated from the venom of the sea anemone Bunodosoma cangicum. The structure was elucidated by spectroscopic analyses (2D NMR, ESIMS/MS) and verified by its synthesis. Intraplantar injection of BDS 391 into the hind paw of a rat induced a potent analgesic effect. This effect was not altered by naloxone (an opioid receptor antagonist), but was completely reversed by methysergide (a serotonin receptor antagonist), indicating that the effect is mediated by activation of serotonin receptors:
Resumo:
Objective: To evaluate the transepithelial transport of sodium, glucose, potassium, and water and the mRNA level of the sodium-glucose cotransporter (SGLT1) and the facilitated sugar transporter (GLUT2) in the small intestine of iron-deficient rats. Methods: After 6 wk of receiving diets with low or normal iron content, rats (Wistar-EPM) were subjected to two experiments: 1) evaluation of the transepithelial transport of sodium, glucose, potassium, and water by an ""in vivo"" experimental model of intestinal perfusion and 2) determination of relative SGLT1 and GLUT2 mRNA levels in the proximal, intermediate, and distal portions of the small intestine by the northern blotting technique. Results: Hemoglobin and hepatic iron levels were statistically lower in the anemic rats. The mean transepithelial transports of sodium (-33.0 mu Eq . min(-1) . cm(-1)), glucose (426.0 mu M . min(-1) . cm(-1)), and water (0.4 mu L . min(-1) . cm(-1)) in the small intestine of the anemic rats were significantly lower than in the control group (349.1 mu Eq . min(-1) cm(-1), 842.6 mu M . min(-1) . cm(-1), and 4.3 mu l . min(-1) cm(-1), respectively, P < 0.05). The transepithelial transport of potassium was similar for both groups. The relative SGLT1 mRNA levels of the anemic rats in the intermediate (1.796 +/- 0.659 AU) and distal (1.901 +/- 0.766 AU) segments were significantly higher than the values for the control rats (intermediate 1.262 +/- 0.450 AU, distal 1.244 +/- 0.407 AU). No significant difference was observed for the relative SLGT1 mRNA levels in the proximal segment or for the GLUT2 mRNA levels in all segments. Conclusion: Iron deficiency decreases the absorption of glucose, sodium, and water and increases SGLT1 mRNA in the intermediate and distal segments of the small intestine of rats. (C) 2011 Elsevier Inc. All rights reserved.
Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides
Resumo:
Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chlorocatechol 1,2-dioxygenase (1,2-CCD) is a non-heme iron protein involved in the intradiol cleavage of aromatic compounds that are recalcitrant to biodegradation. In particular, 1,2-CCD catalyzes the conversion of catechol and its halogenated derivatives to cis-cis muconic acid. In this study we describe a series of experiments concerning the interaction of chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp1,2-CCD) with cis-cis muconic acid. We used single-injection ITC to show that the reaction product inhibits enzyme kinetics. DSC and EPR measurements probed whether this was accomplished by a direct binding of the product to the enzyme active site. DSC shows that cis-cis muconic acid affects the thermal unfolding of the protein and allowed us to estimate a binding constant. Furthermore, EPR spectra of the Fe(III) center demonstrate that, upon product binding, a significant decrease in resonance intensity is observed, indicating that cis-cis muconic acid binds directly to the active site. Based on the increasing interest for understanding dioxygenases mechanism of action and, moreover, how to control such process, our data indicate that the product of the reaction does play a relevant role in the catalysis and should therefore be taken into account when one thinks about ways of regulating enzyme activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Several studies have shown the antidiabetic properties of sodium tungstate. In this study, we evaluated some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats treated with sodium tungstate solution (2 mg/ml). The studied groups were: untreated control (UC), treated control (TC), untreated diabetic (UD), and treated diabetic (TD). After 2 and 6 weeks of treatment, parotid gland was removed and total protein and sialic acid (free and total) concentration and amylase and peroxidase activities were determined. Data were compared by variance analysis and Tukey test (p < 0.05). The sodium tungstate treatment modestly decreased the glycemia of streptozotocin-induced diabetic rats. At week 2 of the study, parotid gland of diabetic rats presented a reduction of total protein concentration (55%) and an increase of amylase (120%) and peroxidase (160%) activities, free (150%) and total (170%) sialic acid concentration. No alteration in the evaluated parameters at week 6 of the study was observed. Sodium tungstate presented no significant effect in parotid gland. Our results suggest that diabetes causes initial modification in biochemical composition of parotid. However, this gland showed a recovery capacity after 6 week of the experimental time. Sodium tungstate has no effect in peripheral tissues, such as salivary glands.
Resumo:
Milk supplementation with milk proteins in four different levels was used to investigate the effect on acidification and textural properties of yogurt. Commercial skim milk powder was diluted in distilled water, and the supplements were added to give different enriched-milk bases; these were heat treated at 90 degrees C for 5 min. These mixtures were incubated with the bacterial cultures for fermentation in a water bath, at 42 degrees C, until pH 4.50 was reached. Chemical changes during fermentation were followed by measuring the pH. Protein concentration measurements, microbial counts of Lactobacillus bulgaricus and Streptococcus thermophilus, and textural properties (G`, G ``, yield stress and firmness) were determined after 24 h of storage at 4 degrees C. Yogurt made with milk supplemented with sodium caseinate resulted in significant properties changes, which were decrease in fermentation time, and increase in yield stress, storage modulus, and firmness, with increases in supplement level. Microstructure also differed from that of yogurt produced with milk supplemented with skim milk powder or sodium caseinate. (C) 2009 Elsevier Ltd. All rights reserved.