911 resultados para Sodium Potassium Chloride Symporter Inhibitors
Resumo:
Many patients with type 2 diabetes are obese (diabesity), and the two conditions together impose a particularly complex therapeutic challenge. Several differently acting agents are often required at the same time, encouraging development of more single-tablet combinations. Longer-acting (once daily and once weekly) injected agonists of glucagon-like peptide-1 are due to provide additional options to stimulate insulin secretion with weight loss and minimal risk of hypoglycemia. Further, dipeptidyl peptidase-4 inhibitors ("weight-neutral" insulinotropic agents) are also expected. Sodium-glucose cotransporter 2 inhibitors offer a new option to reduce hyperglycemia and facilitate weight loss by increasing the elimination of glucose in the urine. Selective peroxisome proliferator-activated receptor modulators are being studied to produce compounds with desired effects. Many other agents with antidiabetic and antiobesity activity are progressing in clinical development.
Resumo:
Growth of biomass and sporulation of pathogenic and non-pathogenic Saprolegnia species was markedly decreased at reduced water potentials. Oogonium and zoosporangium formation were more sensitive to reduced osmotic and matrix potentials than growth in biomass. Although little difference was observed between the effects of matrix and osmotic potentials, the Saprolegnia species investigated responded differently to those solutes utilized in control of osmotic potential. Biomas, oogonium and zoosporangium formation were greater in the presence of reduced osmotic potentials mediated by mannitol than equivalent potentials mediated by potassium chloride. Endogenous potassium levels varied little with reduced matrix or osmotic potentials. Conversly, mannitol content of colonies exposed to reduced osmotic potentials mediated by mannitol initailly increased while endogenous amino acid levels were observed to rise in response to moderately reduced water potentials. Sensitivity of Saprolegnia species to reduced potantials and effects on substrate colonization are discussed in the light of these observations.
Resumo:
The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.
Resumo:
A novel direct compression tableting excipient has been made by recrystallisation of lactose. The particles produced had high porosity, high specific surface area and high surface roughness. The resistance to segregation of ordered mixes formed between a model drug; potassium chloride and the excipients recrystallised lactose, spray crystallised maltose-dextrose (Emdexl and a direct compacting sugar (Dipac) was studied using a vibrational segregation model. The highly porous excipients, Emdex and recrystallised lactose formed ordered mixes which did not segregate even at high accelerations and low frequencies whereas the relatively smooth excipient, Dipac, displayed marked segregation in most vibration conditions. The vibrations were related to practical conditions measured in pharmaceutical process machinery. The time required to form an ordered mix was inversely related to the stability of the mix when subjected to vibration. An ultracentrifuge technique was developed to determine the interparticle adhesion forces holding drug and excipient particles together as ordered units. Excipient powders such as Emdex and recrystallised lactose, which formed non-segregating ordered mixes, had high interparticle adhesion forces. Other ordered mixes that segregated when subjected to different vibration conditions were found to have large quantities of weekly-bound drug particles; such mixes included those with Dipac as the carrier excipient as well as those containing a high concentration of drug. The electrostatic properties of different drug and excipient powders were studied using a Faraday well and an electrometer. Excipient powders such as Emdex and recrystallised lactose which formed stable ordered mixes also had a widely different surface charge in comparison with drug particles, whereas Dipac had a similar surface charge to the drug particles and formed unstable ordered mixes. A specially constructed triboelectric charging apparatus based on an air cyclone was developed to increase the affinity of drug particles for different excipient particles. Using triboelectrification to increase the interparticle adhesion forces, the segregation tendencies of unstable ordered mixes were greatly reduced. The stability of ordered mixes is shown to be related to both the surface physical characteristics and the surface electrical properties of the constituent carrier (excipientl particles.
Resumo:
Contractile response of rat aorta, mesenteric artery and femoral artery to noradrenaline and potassium chloride were studied under standard and hypoxic conditions and the effect of hypoxia was dependent upon both the vessel and the stimulant. Hypoxia had less effect upon contractions to potassium chloride than those to noradrenaline. The effects of hypoxia on potassium chloride induced responses in different vessels were relatively similar although responses to noradrenaline were vessel dependent. Noradrenaline induced contractions of the femoral artery were most affected by hypoxia whilst those of the mesenteric artery were least affected. Hypoxia changed the well maintained response of the femoral artery to noradrenaline to a transient form; this effect of hypoxia was not evident in the aorta or the mesenteric artery. The aorta and mesenteric artery contracted in calcium free EGTA PSS suggesting that these vessels displayed a release component. Hypoxia reduced the magnitude of this component. The effects of verapamil on noradrenaline and potassium chloride induced responses were investigated and were found to be different to those of hypoxia. Verapamil exerted a greater effect on contractions to potassium chloride than on those to noradrenaline. The effects of hypoxia on 45calcium flux were also vessel dependent. In the mesenteric and femoral arteries hypoxia increased basal 45calcium accumulation. However, the magnitude of noradrenaline stimulated 45calcium accumulation was reduced in the femoral artery and aorta but was unchanged in the mesenteric artery. The effects of hypoxia on 45calcium accumulation were similar to verapamil only in the aorta. The results provide evidence that the effects of hypoxia may arise from alterations in calcium mobilisation processes and that differences between vessels in these processes accounts for the heterogeneity between vessels in their response to hypoxia.
Resumo:
The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.
Resumo:
here is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
There is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
Focal points Over a six-week period in January and February 2002, 2ml samples were removed from all neonatal PN bags dispensed Samples were submitted for analysis of sodium, potassium and magnesium in triplicate by the hospital's clinical chemistry department using a Vitros Codac 950AT, dry slide, automated analyser Only 19.3, 7.1 and 30.4 per cent of measured sodium, potassium and magnesium concentrations respectively deviated by £5 per cent from stated bag concentrations The results indicate that it is possible that some electrolyte concentrations included in neonatal PN vary significantly from stated values
Resumo:
ε-caprolactam is a monomer of high value. Therefore, the chemical reutilization of polyamide 6 containing carpets for ε-caprolactam recovery offers some economic benefit and is performed on a technical scale with the help of the Zimmer-process. By this process polyamide 6 is depolymerized with steam and phosphoric acid. An alternative to this process is the thermal depolymerization - catalyzed or non-catalyzed. To investigate this alternative in more detail, the formal kinetic parameters of (i) the thermal depolymerization of polyamide 6, (ii) the thermal depolymerization in presence of sodium/potassium hydoxide, and (iii) the thermal depolymerization in presence of phosphoric acid are determined in this work. Based on the kinetics of the catalyzed or non-catalyzed depolymerization a stepwise pyrolysis procedure is designed by which the formation of ε-caprolactam from polyamide 6 can be separated from the formation of other pyrolysis products. © 2001 Elsevier Science B.V.
Resumo:
This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.
Resumo:
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.