347 resultados para Simulink


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the modeling and FPGA implementation of digital TIADC mismatches compensation systems. The development of the whole work follows a top-down methodology. Following this methodology was developed a two channel TIADC behavior modeling and their respective offset, gain and clock skew mismatches on Simulink. In addition was developed digital mismatch compensation system behavior modeling. For clock skew mismatch compensation fractional delay filters were used, more specifically, the efficient Farrow struct. The definition of wich filter design methodology would be used, and wich Farrow structure, required the study of various design methods presented in literature. The digital compensation systems models were converted to VHDL, for FPGA implementation and validation. These system validation was carried out using the test methodology FPGA In Loop . The results obtained with TIADC mismatch compensators show the high performance gain provided by these structures. Beyond this result, these work illustrates the potential of design, implementation and FPGA test methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho propõe uma metodologia de tradução para igualar o programa de controle de PLC no ambiente Matlab/Simulink. A lista traduz automaticamente o programa de controlo de PLC para a linguagem. de software Matlab/Simulink. O programa do PlC é traduzido para uma função bloco do Matlab, dentro do ambiente Matlab/Simulink, que irá controlar o modelo do processo industrial, desde que a simulação seja executada. As entradas e saídas da lista de tradução do PLC depende do tipo de autómato que é escolhido. A lista de tradução será compatível com um ficheiro Matlab/Simulink que corresponde tradução de programa de controle de PLC. ABSTRACT: This work proposes a translation methodology to equa1 the program of control of PLC in the environment Matlab/Simulink. The list translates automatically the program of control of PLC for the language of software Matlab/Simulink. The program of the PlC is translated for a function block of the Matlab, inside the environment Matlab/Simulink, which will be going to control the model of the industrial process, since the simulation is executed. The entries and exits of the translation list of the PLC it depends on the type of automaton that is chosen. The translation list will be compatible with a filing cabinet Matlab/Simulink that corresponds translation of program of control of PLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of a Brain Emotional Learning (BEL) controller to improve the response of a SDOF structural system under an earthquake excitation using a magnetorheological (MR) damper. The main goal is to study the performance of a BEL based semi-active control system to generate the control signal for a MR damper. The proposed approach consists of a two controllers: a primary controller based on a BEL algorithm that determines the desired damping force from the system response and a secondary controller that modifies the input current to the MR damper to generate a reference damping force. A parametric model of the damper is used to predict the damping force based on the piston motion and also the current input. A Simulink model of the structural system is developed to analyze the effectiveness of the semi-active controller. Finally, the numerical results are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Elétrica e Eletrónica, Especialização em Sistemas de Energia e Controlo, Instituto Superior de Engenharia, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se muestra la experiencia de usar una herramienta de desarrollo de ingeniería basada en modelos (MDE) frente a otra herramienta tradicional de programacion de sistemas embebidos en lenguaje C, para la realizacion de clases practicas de robotica. Se ha plantea do una practica basada en el control cinemático de un robot móvil en ambos entornos con similares bloques y funciones de partida. Los resultados muestran tanto la comparación de las evaluaciones objetivas realiza das a los dos grupos como los datos relativos a los tiempos requeridos para la realización de las diferentes partes de la practica. Si bien, los resultados del aprendizaje son mayores en el caso del método basado en programacion, la diferencia en tiempos invertidos y otras valoraciones hacen m´as adecuado el MDE .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a load sharing method applied in a distributed micro grid system. The goal of this method is to balance the state-of-charge (SoC) of each parallel connected battery and make it possible to detect the average SoC of the system by measuring bus voltage for all connected modules. In this method the reference voltage for each battery converter is adjusted by adding a proportional SoC factor. Under such setting the battery with a higher SoC will output more power, whereas the one with lower SoC gives out less. Therefore the higher SoC battery will use its energy faster than the lower ones, and eventually the SoC and output power of each battery will converge. And because the reference voltage is related to SoC status, the information of the average SoC in this system could be shared for all modules by measuring bus voltage. The SoC balancing speed is related to the SoC droop factors. This SoC-based load sharing control system is analyzed in feasibility and stability. Simulations in MATLAB/Simulink are presented, which indicate that this control scheme could balance the battery SoCs as predicted. The observation of SoC sharing through bus voltage was validated in both software simulation and hardware experiments. It could be of use to non-communicated distributed power system in load shedding and power planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis has been part of a Cranfield University research project. This thesis aims to design a flight control law for large cargo aircraft by using predictive control, which can assure flight motion along the flight path exactly and on time. In particular this work involves the modelling of a Boeing C-17 Globemaster III 6DOF model (used as study case), by using DATCOM and Matlab Simulink software. Then a predictive control algorithm has been developed. The majority of the work is done in a Matlab/Simulink environment. Finally the predictive control algorithm has been applied on the aircraft model and its performances, in tracking given trajectory optimized through a 4DT Research Software, have been evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'obiettivo di questo lavoro di tesi è realizzare un modello, prima statico poi dinamico, dei componenti: imbocco e gruppo compressore, del turboalbero Allison 250 C18 sottoposto alla tecnologia del fogging. I dati sperimentali utilizzati provengono da prove sperimentali svolte da un altro tesista nel laboratorio di Propulsione e macchine della Scuola di Ingegneria e Architettura di Forlì. Grazie al modello statico, realizzato con il software MATLAB®, sono state create le principali mappe prestazionali dei singoli componenti. Queste ultime sono state poi implementate all'interno del modello dinamico realizzato con il software Simulink. Attraverso il modello dinamico, siamo stati in grado di osservare, grazie ad una struttura modulare a blocchi, l'andamento delle grandezze anche in regime transitorio, e di cambiare i parametri di inizializzazione in maniera molto rapida. Infine i dati ottenuti sono stati confrontati con i dati sperimentali e sono state effettuate valutazioni sull'utilità o meno del fogging. Entrambe le conclusioni hanno dato buoni risultati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load frequency Control (LFC) is used for many years as part of Automatic Generation Control (AGC) in power system around the world. In a mixed power system, it is usual to find an area regulated by hydro generation interconnected to another area regulated by thermal generation or in combination of both. In the following study, performance of AGC for Thermal, Hydro and Thermal turbine based power system is examined, including how frequency bias setting influences AGC responseand inadvertent interchange. Control performance analysis of three area interconnected systems is simulated and studied through Matlab Simulink software. Integral square error and Integral time absolute error has been used as performance criterion. It is shown that integral timeabsolute error (ITAE) as performance index leads to faster optimization of controller gain.