901 resultados para Simulation of a Detector
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A theoretical investigation has been carried out to characterize bulk and selected surfaces of anatase TiO2. The calculations are performed using a B3LYP hybrid functional and 6-31G basis set within the periodic density functional approximation. Optimization procedures have been employed to determine the equilibrium geometry of the crystal and slab surface models. The compressibility, band structure, and the bulk and surface charge distributions are reported. The surface relative energies are identified to follow the sequence: (001) < (101) < (100) much less than (110) < < < (111), from the most stable surface to the least stable one. Relaxation of (001) and (101) surfaces are moderate, with no displacements exceeding; approximate to0.19 Angstrom. The theoretical results are compared with previous theoretical studies and available experimental data. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This work presents a numerical study of the tri-dimensional convection-diffusion equation by the control-volume-based on finite-element method using quadratic hexahedral elements. Considering that the equation governing this problem in its main variable may represent several properties, including temperature, turbulent kinetic energy, viscous dissipation rate of the turbulent kinetic energy, specific dissipation rate of the turbulent kinetic energy, or even the concentration of a contaminant in a given medium, among others, the wide applicability of this problem is thus evidenced. Three cases of temperature distributions will be studied specifically in this work, in addition to one case of pollutant dispersion upon analysis of the concentration of a contaminant in a fixed flow point. Some comparisons will be carried out against works found in the open literature, while others will be done according to each phenomenon characteristics.
Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as Ginzburg-Landau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are presented for different GLL equations, with emphasis on equations incorporating memory effects.
Resumo:
In this paper, self-synchronization of four non-ideal exciters is examined via numerical simulation. The mathematical model consists of four unbalanced direct Current motors with limited power supply mounted on a flexible Structural frame support. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.