923 resultados para Side pixel registration
Resumo:
We developed an automated system that registers chest CT scans temporally. Our registration method matches corresponding anatomical landmarks to obtain initial registration parameters. The initial point-to-point registration is then generalized to an iterative surface-to-surface registration method. Our "goodness-of-fit" measure is evaluated at each step in the iterative scheme until the registration performance is sufficient. We applied our method to register the 3D lung surfaces of 11 pairs of chest CT scans and report promising registration performance.
Resumo:
The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.
Resumo:
We propose a novel image registration framework which uses classifiers trained from examples of aligned images to achieve registration. Our approach is designed to register images of medical data where the physical condition of the patient has changed significantly and image intensities are drastically different. We use two boosted classifiers for each degree of freedom of image transformation. These two classifiers can both identify when two images are correctly aligned and provide an efficient means of moving towards correct registration for misaligned images. The classifiers capture local alignment information using multi-pixel comparisons and can therefore achieve correct alignments where approaches like correlation and mutual-information which rely on only pixel-to-pixel comparisons fail. We test our approach using images from CT scans acquired in a study of acute respiratory distress syndrome. We show significant increase in registration accuracy in comparison to an approach using mutual information.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.
Resumo:
We introduce a method for recovering the spatial and temporal alignment between two or more views of objects moving over a ground plane. Existing approaches either assume that the streams are globally synchronized, so that only solving the spatial alignment is needed, or that the temporal misalignment is small enough so that exhaustive search can be performed. In contrast, our approach can recover both the spatial and temporal alignment. We compute for each trajectory a number of interesting segments, and we use their description to form putative matches between trajectories. Each pair of corresponding interesting segments induces a temporal alignment, and defines an interval of common support across two views of an object that is used to recover the spatial alignment. Interesting segments and their descriptors are defined using algebraic projective invariants measured along the trajectories. Similarity between interesting segments is computed taking into account the statistics of such invariants. Candidate alignment parameters are verified checking the consistency, in terms of the symmetric transfer error, of all the putative pairs of corresponding interesting segments. Experiments are conducted with two different sets of data, one with two views of an outdoor scene featuring moving people and cars, and one with four views of a laboratory sequence featuring moving radio-controlled cars.
Resumo:
A difficulty in lung image registration is accounting for changes in the size of the lungs due to inspiration. We propose two methods for computing a uniform scale parameter for use in lung image registration that account for size change. A scaled rigid-body transformation allows analysis of corresponding lung CT scans taken at different times and can serve as a good low-order transformation to initialize non-rigid registration approaches. Two different features are used to compute the scale parameter. The first method uses lung surfaces. The second uses lung volumes. Both approaches are computationally inexpensive and improve the alignment of lung images over rigid registration. The two methods produce different scale parameters and may highlight different functional information about the lungs.
Resumo:
Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.
Resumo:
PURPOSE: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. METHODS: Ten high-exposure open field images were taken with an RQA5 spectrum, using a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. RESULTS: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm(-1). At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam spectra. CONCLUSIONS: This study demonstrates that a simple gain-map can be used to correct for the fixed-pattern noise in a given plate and thus improve the DQE of CR imaging. Such a method could easily be implemented by manufacturers because each plate has a unique bar code and the gain-map for all plates associated with a reader could be stored for future retrieval. These experiments indicated that an improvement in NPS (and hence, DQE) is possible, depending on exposure level, over a wide range of frequencies with this technique.
Resumo:
The clinical use of stem cells, such as bone marrow-derived and, more recently, resident cardiac stem cells, offers great promise for treatment of myocardial infarction and heart failure. The epicardium-derived cells have also attracted attention for their angiogenic paracrine actions and ability to differentiate into cardiomyocytes and vascular cells when activated during cardiac injury. In a recent study, Chong and colleagues have described a distinct population of epicardium-derived mesenchymal stem cells that reside in a perivascular niche of the heart and have a broad multilineage potential. Exploring the therapeutic capacity of these cells will be an exciting future endeavor.
Resumo:
Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest due to the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome, and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3-D computerized tomography (CT) images of intact rat brains implanted with metal electrode bundles to a Magnetic Resonance Imaging Histology (MRH) Atlas. Our method allows accurate visualization of each electrode bundle's trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by "re-slicing" the images along different planes of view. Further, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience.
Resumo:
The main sources of financing for small and medium sized enterprises (SMEs) are equity (internally generated cash), trade credit paid on time, long and short term bank credits, delayed payment on trade credit and other debt. The marginal costs of each financing instrument are driven by asymmetric information (cost of gathering and analysing information) and transactions costs associated with non-payment (costs of collecting and selling collateral). According to the Pecking Order Theory, firms will choose the cheapest source in terms of cost. In the case of the static trade-off theory, firms choose finance so that the marginal costs across financing sources are all equal, thus an additional Euro of financing is obtained from all the sources whereas under the Pecking Order Theory the source is determined by how far down the Pecking Order the firm is presently located. In this paper, we argue that both of these theories miss the point that the marginal costs are dependent of the use of the funds, and the asset side of the balance sheet primarily determines the financing source for an additional Euro. An empirical analysis on a unique dataset of Portuguese SME's confirms that the composition of the asset side of the balance sheet has an impact of the type of financing used and the Pecking Order Theory and the traditional Static Trade-off theory are rejected.
Resumo:
Based on the IMP research tradition this paper regards relationships and networks as key issues in the product development and supply management agenda. Within business networks, co-development is only possible to be analysed when emphasis is placed on interdependences and interactive relationships. Co-development usually implies close relationships that allow companies to rely on each other's resources. Close relationships imply interdependences, which may improve companies' technical and product development. By looking at the actual interactions - between a UK company and its Chinese suppliers - that led to an innovative solution and a successful product launch, evolving relationship patterns are identified and analysed in a case study. Both the literature review and case study findings highlight the importance of the 'guanxi' concept (meaning interpersonal relationships in Mandarin) when analysing business-to-business networks in China. Hence, it is suggested that guanxi-based thinking and acting should be incorporated into the interaction model when considering business networking that embrace China. 'Guanxi' broadens the validity of the interaction model, in terms of geographical proximity, and deepens its theoretical base. The case study provides valuable insights for supply management under a product development context in China. In practice, the main point of interest is that Chinese suppliers are important 'resource' providers as well as 'network' providers. Hence, it is suggested that guanxi practice should be reflected into theoretical developments.