862 resultados para Short-term effectiveness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the physicochemical changes in Nile tilapia (n = 82, 373.71 ± 61.91 g) refrigerated for up to 92 h and in the frozen fillets. The tilapias were captured with nets, slaughtered by ice and water shock (1:1) in a temperature of approximately 2°C for 30 min, and stored refrigerated at 4°C in polystyrene boxes containing ice. The fish were filleted, and filets were weighed and frozen. The drip loss and protein were determined after 23 days of frozen storage. After 4 h of storage, all fish were in full rigor mortis. The pH of the muscles decreased for up to 45 h of the storage period. The fillets obtained from tilapia stored for more than 72 h lost more weight and protein. Thus, the filleting or processing of tilapia should be done before 72 h of cold storage, since deterioration of the fish starts to occur after this period. Copyright © Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography