998 resultados para Shoreline changes
Resumo:
Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.
Resumo:
Stable carbon isotope ratios of peats dated (by C-14) back to 40 kyr BP from the montane region (> 1800 m asl) of the Nilgiris, southern India, reflect changes in the relative proportions of C3 and C4 plant types, which are influenced by soil moisture (and hence monsoonal precipitation), From prior to 40 kyr BP until 28 kyr BP, a general decline in delta(13)C values from about - 14 per mil to - 19 per mil suggests increased dominance of C3 plants concurrent with increasingly moist conditions, During 28-18 kyr BP there seems relatively little change with delta(13) C of - 19 to - 18 per mil, At about 16 kyr BP a sharp reversal in delta(13)C to a peak of - 14.7 per mil indicates a clear predominance of C4 vegetation associated with arid conditions, possibly during or just after the Last Glacial Maximum, A moist phase at about 9 kyr BP (the Holocene Optimum) with dominance of C3 vegetation type is observed, while arid conditions are re-established during 5-2 kyr BP with an overall dominance of C4 vegetation, New data do not support the occurrence of a moist phase coinciding with the Mediaeval Warm Period (at 0.6 kyr BP) as suggested earlier, Overall, the climate and vegetation in the high altitude regions of the southern Indian tropics seem to have responded to past global climatic changes, and this is consistent with other evidences from India and other tropical regions.
Resumo:
Pentoxifylline (PF) is used to enhance motility of spermatozoa from infertile human subjects. We have previously shown that 0.45 mM PF improved capacitation of spermatozoa and fertilization of oocytes in vitro in hamsters. The present study was carried out to assess PF- induced changes in motility kinematics of hamster spermatozoa by a computer-aided sperm analyser (CASA) and determine the timing of onset of hyperactivation (HA) and acrosome reaction (AR) in PF-treated spermatozoa. Motility kinematics were analysed by CASA for 0-8 h in the absence or presence of 0.45 mM PF in Tyrode's medium supplemented with lactate, pyruvate and polyvinyl alcohol (TLP-PVA) or in TLP-PVA with bovine serum albumin (TALP-PVA). Conventional assessment was also made on the percentage of motility and quality of motility of spermatozoa; values were expressed as sperm motility index (SMI). Both in TALP-PVA and TLP-PVA, PF markedly increased SMI, especially the quality of motility (P < 0.02) by 2-3 h which was sustained up to 6 h. The motility kinematic data of PF-treated spermatozoa in TALP-PVA showed that average path velocity, curvilinear velocity and amplitude of lateral head displacement significantly (P < 0.05) increased as early as 2 h, with the expected decrease in straightness (STR) and linearity (LIN). Similar changes were also observed with PF-treated spermatozoa in TLP-PVA. Moreover, the percentage of hyperactivated spermatozoa in PF-treated samples was significantly (P < 0.001) higher than the untreated control at 2 h. To determine whether PF could induce AR, independent of bovine serum albumin, quantitative AR was assessed by observing the presence or absence of acrosomal cap on viable spermatozoa. PF significantly (P < 0.001) increased the percentage of AR as early as 2 h, reaching maximum at 4 h both in TALP-PVA (P < 0.05) and in TLP-PVA (P < 0.001). These results show that, in hamsters, PF induces early onset (by 2 h) of HA and AR and increases the proportion of spermatozoa undergoing physiological maturation.
Resumo:
We have determined relative levels of chloroplast leucine and tyrosine isoaccepting tRNAs and modified nucleotide contents from total tRNAs isolated from dark-grown, light-grown, N6-isopentenyladenine (i6A)-treated dark-grown and i6A-treated light-grown cucumber seedlings. Significant increases in the relative amounts of tRNA(Leu)2 and tRNA(Leu)3 were observed in the i6A-treated dark-grown seedlings compared to dark-grown, light-grown and i6A-treated light-grown seedlings. On the other hand, i6A-treated light-grown seedlings tRNA(Tyr)1 increased to 85% of total tRNAs(Tyr) from about 9% in light-grown seedlings and tRNA(Tyr)2 decreased to 15% compared with 91% in light-grown seedlings. Analysis of modified nucleotide of total tRNAs indicated that pT, pI, pm1A, pm5C, pGm, pm1G, pm2G and pm7G contents were significantly higher in the total tRNA of i6A-treated dark-grown seedlings than those from untreated dark-grown seedlings. Illumination of 8-day-old dark-grown seedlings for 12 h increased the contents of pT, pI, pGm and pm1G when compared to 8-day-old dark-grown seedlings with extended growth for 12 h in dark. On the contrary, i6A had no stimulatory effect in the contents of modified nucleotide in the light-grown seedlings.
Resumo:
Cancer is a leading cause of death worldwide and the total number of cancer cases continues to increase. Many cancers, for example sinonasal cancer and lung cancer, have clear external risk factors and so are potentially preventable. The occurrence of sinonasal cancer is strongly associated with wood dust exposure and the main risk factor for lung cancer is tobacco smoking. Although the molecular mechanisms involved in lung carcinogenesis have been widely studied, very little is known about the molecular changes leading to sinonasal cancer. In this work, mutations in the tumour suppressor TP53 gene in cases of sinonasal cancer and lung cancer and the associations of these mutations with exposure factors were studied. In addition, another important mechanism in many cancers, inflammation, was explored by analyzing the expression of the inflammation related enzyme, COX-2, in sinonasal cancer. The results demonstrate that TP53 mutations are frequent in sinonasal cancer and lung cancer and in both cancers they are associated with exposure. In sinonasal cancer, the occurrence of TP53 mutation significantly increased in relation to long duration and high level of exposure to wood dust. Smoking was not associated with the overall occurrence of the TP53 mutation in sinonasal cancer, but was associated with multiple TP53 mutations. Furthermore, inflammation appears to play a part in sinonasal carcinogenesis as indicated by our results showing that the expression of COX-2 was associated with adenocarcinoma type of tumours, wood dust exposure and non-smoking. In lung cancer, we detected statistically significant associations between TP53 mutations and duration of smoking, gender and histology. We also found that patients with a tumour carrying a G to T transversion, a mutation commonly found in association with tobacco smoking, had a high level of smoking-related bulky DNA adducts in their non-tumorous lung tissue. Altogether, the information on molecular changes in exposure induced cancers adds to the observations from epidemiological studies and helps to understand the role and impact of different etiological factors, which in turn can be beneficial for risk assessment and prevention.
Resumo:
Objective: To document electroencephalogram (EEG) changes and their correlation with clinical parameters in a newly diagnosed pediatric cohort of type 1 diabetes mellitus (T1DM) patients with and without diabetic ketoacidosis (DKA) and to define their medium term utility and significance. Research design and methods: Prospective longitudinal study of children presenting with T1DM. EEGs were performed within 24 h of diagnosis, day 5, and at 6 months post-diagnosis and reviewed by a neurologist blinded to clinical status. Severity of encephalopathy was graded from 1 to 5 using the Aoki and Lombroso encephalopathy scale. Cognitive abilities were assessed using standardized tests of attention, memory, and intelligence. Results: Eighty eight children were recruited; 34 presented with DKA. Abnormal background slowing was more often observed in the first 24 h in children with DKA (p = 0.01). Encephalopathy scores on day 1 correlated with initial pH, CO2, HCO3, base excess, respiratory rate, heart rate, diastolic blood pressure, and IV fluid intake (all parameters p < 0.05). EEG scores at day 1 did not correlate with contemporaneous mental state or cognition in the medium term. Conclusions: DKA was associated with significant clinical and neurophysiologic signs of brain dysfunction at presentation. While EEG is sensitive to the detection of encephalopathy in newly diagnosed T1DM, it has limited use in identifying children at risk of later cognitive deficits.
Resumo:
This chapter examines the burgeoning field of dramaturgy in Australian performance and suggests that the growth of the both the profession and the practices of dramaturgy were a result of structural changes arising from the policies of the Howard Government, globalism and economic rationalism, as well as the demographic pressures of generational reform.
Resumo:
Sexually mature male rabbits actively immunized against highly purified ovine LH (oLH) were used as a model system to study the effects of endogenous LH deprivation (and therefore testosterone) on spermatogenesis as well as pituitary FSH secretion. Immunization against oLH generated antibody titres capable of cross-reacting and neutralizing rabbit LH and this resulted in a significant reduction (P<0.01) in serum testosterone levels by 2-4 weeks of immunization. A significant increase in circulating FSH concentration (from a basal level of similar to 1 ng to 60-100 ng/ml; P<0.01) was observed within 4-6 weeks of immunization, perhaps a consequence of the negative feedback effect of the lack of testosterone. The effect of LH deprivation on spermatogenesis assessed by DNA flow cytometry and histological analyses of testicular biopsy tissue revealed that lack of testosterone primarily results in a rapid reduction and complete absence of round (1C) and elongated (HC) spermatids. The immediate effect of LH/testosterone deprivation thus appears to be at the step of meiotic transformation of primary spermatocytes (4C) to 1C. A significant reduction (>80%; P<0.01) in the 4C population and a relative accumulation (>90%; P<0.01) in spermatogonia (2C) was also observed, suggesting a need for testosterone during the transformation of 2C to 1C. In all but one of the rabbits, both qualitative and quantitative recovery in spermatogenesis occurred during the recovery phase, even at a time when only a marginal increase in serum testosterone (compared with the preimmunization) levels was observed as a result of a rapid decline in the cross-reactive antibody titres. These results clearly show that LH/testosterone deprivation in addition to primarily affecting the meiotic step also regulates the conversion of 2C to 4C during spermatogenesis.
Resumo:
Industrial ecology is an important field of sustainability science. It can be applied to study environmental problems in a policy relevant manner. Industrial ecology uses ecosystem analogy; it aims at closing the loop of materials and substances and at the same time reducing resource consumption and environmental emissions. Emissions from human activities are related to human interference in material cycles. Carbon (C), nitrogen (N) and phosphorus (P) are essential elements for all living organisms, but in excess have negative environmental impacts, such as climate change (CO2, CH4 N2O), acidification (NOx) and eutrophication (N, P). Several indirect macro-level drivers affect emissions change. Population and affluence (GDP/capita) often act as upward drivers for emissions. Technology, as emissions per service used, and consumption, as economic intensity of use, may act as drivers resulting in a reduction in emissions. In addition, the development of country-specific emissions is affected by international trade. The aim of this study was to analyse changes in emissions as affected by macro-level drivers in different European case studies. ImPACT decomposition analysis (IPAT identity) was applied as a method in papers I III. The macro-level perspective was applied to evaluate CO2 emission reduction targets (paper II) and the sharing of greenhouse gas emission reduction targets (paper IV) in the European Union (EU27) up to the year 2020. Data for the study were mainly gathered from official statistics. In all cases, the results were discussed from an environmental policy perspective. The development of nitrogen oxide (NOx) emissions was analysed in the Finnish energy sector during a long time period, 1950 2003 (paper I). Finnish emissions of NOx began to decrease in the 1980s as the progress in technology in terms of NOx/energy curbed the impact of the growth in affluence and population. Carbon dioxide (CO2) emissions related to energy use during 1993 2004 (paper II) were analysed by country and region within the European Union. Considering energy-based CO2 emissions in the European Union, dematerialization and decarbonisation did occur, but not sufficiently to offset population growth and the rapidly increasing affluence during 1993 2004. The development of nitrogen and phosphorus load from aquaculture in relation to salmonid consumption in Finland during 1980 2007 was examined, including international trade in the analysis (paper III). A regional environmental issue, eutrophication of the Baltic Sea, and a marginal, yet locally important source of nutrients was used as a case. Nutrient emissions from Finnish aquaculture decreased from the 1990s onwards: although population, affluence and salmonid consumption steadily increased, aquaculture technology improved and the relative share of imported salmonids increased. According to the sustainability challenge in industrial ecology, the environmental impact of the growing population size and affluence should be compensated by improvements in technology (emissions/service used) and with dematerialisation. In the studied cases, the emission intensity of energy production could be lowered for NOx by cleaning the exhaust gases. Reorganization of the structure of energy production as well as technological innovations will be essential in lowering the emissions of both CO2 and NOx. Regarding the intensity of energy use, making the combustion of fuels more efficient and reducing energy use are essential. In reducing nutrient emissions from Finnish aquaculture to the Baltic Sea (paper III) through technology, limits of biological and physical properties of cultured fish, among others, will eventually be faced. Regarding consumption, salmonids are preferred to many other protein sources. Regarding trade, increasing the proportion of imports will outsource the impacts. Besides improving technology and dematerialization, other viewpoints may also be needed. Reducing the total amount of nutrients cycling in energy systems and eventually contributing to NOx emissions needs to be emphasized. Considering aquaculture emissions, nutrient cycles can be partly closed through using local fish as feed replacing imported feed. In particular, the reduction of CO2 emissions in the future is a very challenging task when considering the necessary rates of dematerialisation and decarbonisation (paper II). Climate change mitigation may have to focus on other greenhouse gases than CO2 and on the potential role of biomass as a carbon sink, among others. The global population is growing and scaling up the environmental impact. Population issues and growing affluence must be considered when discussing emission reductions. Climate policy has only very recently had an influence on emissions, and strong actions are now called for climate change mitigation. Environmental policies in general must cover all the regions related to production and impacts in order to avoid outsourcing of emissions and leakage effects. The macro-level drivers affecting changes in emissions can be identified with the ImPACT framework. Statistics for generally known macro-indicators are currently relatively well available for different countries, and the method is transparent. In the papers included in this study, a similar method was successfully applied in different types of case studies. Using transparent macro-level figures and a simple top-down approach are also appropriate in evaluating and setting international emission reduction targets, as demonstrated in papers II and IV. The projected rates of population and affluence growth are especially worth consideration in setting targets. However, sensitivities in calculations must be carefully acknowledged. In the basic form of the ImPACT model, the economic intensity of consumption and emission intensity of use are included. In seeking to examine consumption but also international trade in more detail, imports were included in paper III. This example demonstrates well how outsourcing of production influences domestic emissions. Country-specific production-based emissions have often been used in similar decomposition analyses. Nevertheless, trade-related issues must not be ignored.
Resumo:
The southern Western Ghats tropical montane cloud forest sites (Gavi, Periyar, High wavys and Venniyar), which are characterized by frequent or seasonal cloud cover at the vegetation level, are considered one of the most threatened ecosystems in India and the world. Three out of four montane cloud forest sites studied in the southern Western Ghats had experienced diminishing trends of seasonal average and total rainfall, especially during summer monsoon season. The highest level of reduction for summer monsoon season was observed at Gavi rainforest station (>20 mm/14 years) in Kerala followed by Venniyar (>20 mm/20 years) site in Tamil Nadu. Average annual and total precipitation increased during the study period irrespective of the seasons over Periyar area, and the greatest values were recorded for season 2 (>25 mm/28 years). Positive trends for winter monsoon rainfall has been observed for three stations (Periyar, High wavys and Venniyar) except Gavi, and the trend was positive and significant (90%) for Periyar and High wavys. Increase in summer monsoon rainfall was observed for Periyar site and the trend was found to be significant (95%).
Resumo:
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Resumo:
The need to address substance use among people with psychosis has been well established. However, treatment studies targeting substance use in this population have reported mixed results. Substance users with psychosis in no or minimal treatment control groups achieve similar reductions in substance use compared to those in more active substance use treatment, suggesting a role for natural recovery from substance use. This meta-analysis aims to quantify the amount of natural recovery from substance use within control groups of treatment studies containing samples of psychotic substance users, with a particular focus on changes in cannabis use. A systematic search was conducted to identify substance use treatment studies. Meta-analyses were performed to quantify reductions in the frequency of substance use in the past 30 days. Significant but modest reductions (mean reduction of 0.3–0.4 SD across the time points) in the frequency of substance use were found at 6 to 24 months follow up. The current study is the first to quantify changes in substance use in samples enrolled in no treatment or minimal treatment control conditions. These findings highlight the potential role of natural recovery from substance use among individuals with psychosis, although they do not rule out effects of regression to the mean. Additionally, the results provide a baseline from which to estimate likely changes or needed effects sizes in intervention studies. Future research is required to identify the processes underpinning these changes, in order to identify strategies that may better support self-management of substance use in people with psychosis.
Resumo:
We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.
Resumo:
Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.
Resumo:
Ischemic stroke (IS) is a heterogeneous disease in which outcome is influenced by many factors. The hemostatic system is activated in association with cerebral ischemia, and thus, markers measuring coagulation, fibrinolysis, and vasoactivity could be useful tools in clinical practice. We investigated whether repeated measurements of these markers reveal patterns that might help in evaluating IS patients, including the early diagnosis of stroke subtypes, in estimating prognosis and risk of recurrence, and in selecting a treatment for secondary prevention of stroke. Vasoconstrictor peptide endothelin-1 (ET-1), homocysteine (Hcy), indicators of thrombin formation and activation (prothrombin fragment 1+2/F1+2, thrombin-antithrombin complex/TAT), indicators of plasmin formation and fibrinolysis (tissue plasminogen activator/t-PA, plasminogen activator inhibitor-1/PAI-1, and D-dimer), and natural anticoagulants (antithrombin/AT, protein C/PC, and protein S/PS) were measured in 102 consecutive mild to moderate IS patients on four occasions: on admission and at 1 week, 1 month, and 3 months after stroke, and once in controls. All patients underwent neurological examination and blood sampling in the same session. Furthermore, 42 IS patients with heterozygous factor V Leiden mutation (FVLm) were selected from 740 IS patients without an obvious etiology, and evaluated in detail for specific clinical, laboratory, and radiological features. Measurements of ET-1 and Hcy levels did not disclose information that could aid in the diagnostic evaluation of IS patients. F1+2 level at 3 months after IS had a positive correlation with recurrence of thromboembolic events, and thus, may be used as a predictive marker of subsequent cerebral events. The D-dimer and AT levels on admission and 1 week after IS were strongly associated with stroke severity, outcome, and disability. The specific analysis of IS patients with FVLm more often revealed a positive family history of thrombosis, a higher prevalence of peripheral vascular disease, and multiple infarctions in brain images, most of which were `silent infarcts´. Results of this study support the view that IS patients with sustained activation of both the fibrinolytic and the coagulation systems and increased thrombin generation may have an unfavorable prognosis. The level of activation may reflect the ongoing thrombotic process and the extent of thrombosis. Changes in these markers could be useful in predicting prognosis of IS patients. A clear need exists for a randomized prospective study to determine whether a subgroup of IS patients with markers indicating activation of fibrinolytic and coagulation systems might benefit from more aggressive secondary prevention of IS.