952 resultados para Sex chromosome system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bd. 1, Ed. accurata mit dem Erscheinungsvermerk: Biponti : Typographia Societatis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps the most striking fact about early Cenozoic avian history some 70 million years ago was the rapid radiation of large, flightless, ground-living birds. It has been suggested that, for a time, there was active competition between these large terrestrial birds and the early mammals. Probably reflecting the above noted early start of Ratitae of the infraclass Eoaves, the presumptive sex chromosomes of their present day survivors, such as the emu and the ostrich, largely remained homomorphic. The signs of genetic differentiation between their still-homomorphic Z and W chromosomes were tested by using two marker genes (Z-linked ZOV3 and the gene for the iron-responsive element-binding protein) and one marker sequence of a part of a presumptive pseudogene (W-linked EE0.6 of the chicken). Their homologues, maintaining 71–92% identities to the chicken counterparts, were found in both the emu (Dromaius novaehollandiae) and the ostrich (Struthio camelus). Their locations were visualized on chromosome preparations by fluorescence in situ hybridization. In the case of the emu, these three marker sequences were localized on both members of the fifth pair of a female, thus revealing no sign yet of genetic differentiation between the Z and the W. The finding was the same with regard to both members of the fourth pair of male ostriches. In the female ostrich, however, the sequence of the gene for the iron-responsive element-binding protein was missing from one of the pairs, thus revealing the differentiation by a small deletion of the W from the Z.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Familial multiple system tauopathy with presenile dementia (MSTD) is a neurodegenerative disease with an abundant filamentous tau protein pathology. It belongs to the group of familial frontotemporal dementias with Parkinsonism linked to chromosome 17 (FTDP-17), a major class of inherited dementing disorders whose genetic basis is unknown. We now report a G to A transition in the intron following exon 10 of the gene for microtubule-associated protein tau in familial MSTD. The mutation is located at the 3′ neighboring nucleotide of the GT splice-donor site and disrupts a predicted stem-loop structure. We also report an abnormal preponderance of soluble tau protein isoforms with four microtubule-binding repeats over isoforms with three repeats in familial MSTD. This most likely accounts for our previous finding that sarkosyl-insoluble tau protein extracted from the filamentous deposits in familial MSTD consists only of tau isoforms with four repeats. These findings reveal that a departure from the normal ratio of four-repeat to three-repeat tau isoforms leads to the formation of abnormal tau filaments. The results show that dysregulation of tau protein production can cause neurodegeneration and imply that the FTDP-17 gene is the tau gene. This work has major implications for Alzheimer’s disease and other tauopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro system to study the mechanism of site-specific integration of adeno-associated virus (AAV) was developed. This system is based on two substrates, a linear or circular AAV donor and a circular acceptor containing the preintegration locus AAVS1. In the presence of HeLa extract and the His-Tag-purified Rep68 protein, specific covalent junctions between AAV and AAVS1 were formed and detected by PCR. The majority of the junctions were located within the Rep binding site of both the AAV and the AAVS1 substrates, underlining the involvement of the Rep protein. A limited amount of replication and the presence of nuclear factors promoted the efficiency of the reaction. The process was ATP-dependent, indicating that the helicase activity of Rep may be important in the formation of the junctions. According to current models of integration, the formation of the junctions would represent a first step in the process of AAV integration. This step could be crucial for the site specificity of the recombination event that leads to the integration of AAV into human chromosome 19 in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus × laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno’s hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underacetylation of histone H4 is thought to be involved in the molecular mechanism of mammalian X chromosome inactivation, which is an important model system for large-scale genetic control in eukaryotes. However, it has not been established whether histone underacetylation plays a critical role in the multistep inactivation pathway. Here we demonstrate differential histone H4 acetylation between the X chromosomes of a female marsupial, Macropus eugenii. Histone underacetylation is the only molecular aspect of X inactivation known to be shared by marsupial and eutherian mammals. Its strong evolutionary conservation implies that, unlike DNA methylation, histone underacetylation was a feature of dosage compensation in a common mammalian ancestor, and is therefore likely to play a central role in X chromosome inactivation in all mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pufferfish Fugu rubripes has a genome ≈7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (London) 385, 305–306]. We report extensive conservation of synteny between a 1.5-Mb region of human chromosome 11 and <100 kb of the Fugu genome in three overlapping cosmids. Our findings support the idea that the majority of DNA in the region of human chromosome 11p13 is intergenic. Comparative analysis of three unrelated genes with quite different roles, WT1, RCN1, and PAX6, has revealed differences in their structural evolution. Whereas the human WT1 gene can generate 16 protein isoforms via a combination of alternative splicing, RNA editing, and alternative start site usage, our data predict that Fugu WT1 is capable of generating only two isoforms. This raises the question of the extent to which the evolution of WT1 isoforms is related to the evolution of the mammalian genitourinary system. In addition, this region of the Fugu genome shows a much greater overall compaction than usual but with significant noncoding homology observed at the PAX6 locus, implying that comparative genomics has identified regulatory elements associated with this gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatic-cell hybrids have been shown to maintain the correct epigenetic chromatin states to study developmental globin gene expression as well as gene expression on the active and inactive X chromosomes. This suggests the potential use of somatic-cell hybrids containing either a maternal or a paternal human chromosome as a model system to study known imprinted genes and to identify as-yet-unknown imprinted genes. Testing gene expression by using reverse transcription followed by PCR, we show that functional imprints are maintained at four previously characterized 15q11–q13 loci in hybrids containing a single human chromosome 15 and at two chromosome 11p15 loci in hybrids containing a single chromosome 11. In contrast, three γ-aminobutyric acid type A receptor subunit genes in 15q12–q13 are nonimprinted. Furthermore, we have found that differential DNA methylation imprints at the SNRPN promoter and at a CpG island in 11p15 are also maintained in somatic-cell hybrids. Somatic-cell hybrids therefore are a valid and powerful system for studying known imprinted genes as well as for rapidly identifying new imprinted genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone–receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone–receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone–receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of skin carcinomas presently is believed to be correlated with mutations in the p53 tumor suppressor and ras gene as well as with the loss of chromosome 9. We now demonstrate that, in addition, loss of chromosome 15 may be a relevant genetic defect. Reintroduction of an extra copy of chromosome 15, but not chromosome 4, into the human skin carcinoma SCL-I cells, lacking one copy of each chromosome, resulted in tumor suppression after s.c. injection in mice. Transfection with thrombospondin-1 (TSP-1), mapped to 15q15, induced the same tumor suppression without affecting cell proliferation in vitro or in vivo. Halted tumors remained as small cysts encapsulated by surrounding stroma and blood vessels. These cysts were characterized by increased TSP-1 matrix deposition at the tumor/stroma border and a complete lack of tumor vascularization. Coinjection of TSP-1 antisense oligonucleotides drastically reduced TSP-1 expression and almost completely abolished matrix deposition at the tumor/stroma border. As a consequence, the tumor phenotype reverted to a well vascularized, progressively expanding, solid carcinoma indistinguishable from that induced by the untransfected SCL-I cells. Thus, these data strongly suggest TSP-1 as a potential tumor suppressor on chromosome 15. The data further propose an unexpected mechanism of TSP-1-mediated tumor suppression. Instead of interfering with angiogenesis in general, in this system TSP-1 acts as a matrix barrier at the tumor/stroma border, which, by halting tumor vascularization, prevents tumor cell invasion and, thus, tumor expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial mutation rates can increase and produce genetic novelty, as shown by in vitro and in silico experiments. Despite the cost due to a heavy deleterious mutation load, mutator alleles, which increase the mutation rate, can spread in asexual populations during adaptation because they remain associated with the rare favorable mutations they generate. This indirect selection for a genetic system generating diversity (second-order selection) is expected to be highly sensitive to changes in the dynamics of adaptation. Here we show by a simulation approach that even rare genetic exchanges, such as bacterial conjugation or transformation, can dramatically reduce the selection of mutators. Moreover, drift or competition between the processes of mutation and recombination in the course of adaptation reveal how second-order selection is unable to optimize the rate of generation of novelty.