985 resultados para Semantic Web -- TFM
Resumo:
Le dictionnaire LVF (Les Verbes Français) de J. Dubois et F. Dubois-Charlier représente une des ressources lexicales les plus importantes dans la langue française qui est caractérisée par une description sémantique et syntaxique très pertinente. Le LVF a été mis disponible sous un format XML pour rendre l’accès aux informations plus commode pour les applications informatiques telles que les applications de traitement automatique de la langue française. Avec l’émergence du web sémantique et la diffusion rapide de ses technologies et standards tels que XML, RDF/RDFS et OWL, il serait intéressant de représenter LVF en un langage plus formalisé afin de mieux l’exploiter par les applications du traitement automatique de la langue ou du web sémantique. Nous en présentons dans ce mémoire une version ontologique OWL en détaillant le processus de transformation de la version XML à OWL et nous en démontrons son utilisation dans le domaine du traitement automatique de la langue avec une application d’annotation sémantique développée dans GATE.
Resumo:
Today higher education system and R&D in science & Technology has undergone tremendous changes from the traditional class room learning system and scholarly communication. Huge volume of Academic output and scientific communications are coming in electronic format. Knowledge management is a key challenge in the current century .Due to the advancement of ICT, Open access movement, Scholarly communications, Institutional repositories, ontology, semantic web, web 2.0 etc has revolutionized knowledge transactions and knowledge management in the field of science & technology. Today higher education has moved into a stage where competitive advantage is gained not just through access of infonnation but more importantly from new Knowledge creations.This paper examines the role of institutional repository in knowledge transactions in current scenario of Higher education.
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed
Resumo:
Die Technologie dienstorientierter Architekturen (Service-oriented Architectures, kurz SOA) weckt große Visionen auf Seiten der Industrie wie auch der Forschung. Sie hat sich als derzeit ideale Lösung für Umgebungen, in denen sich die Anforderungen an die IT-Bedürfnisse rapide ändern, erwiesen. Heutige IT-Systeme müssen Managementaufgaben wie Softwareinstallation, -anpassung oder -austausch erlauben, ohne dabei den laufenden Betrieb wesentlich zu stören. Die dafür nötige Flexibilität bieten dienstorientierte Architekturen, in denen Softwarekomponenten in Form von Diensten zur Verfügung stehen. Ein Dienst bietet über seine Schnittstelle lokalen wie entfernten Applikationen einen Zugang zu seiner Funktionalität. Wir betrachten im Folgenden nur solche dienstorientierte Architekturen, in denen Dienste zur Laufzeit dynamisch entdeckt, gebunden, komponiert, verhandelt und adaptiert werden können. Eine Applikation kann mit unterschiedlichen Diensten arbeiten, wenn beispielsweise Dienste ausfallen oder ein neuer Dienst die Anforderungen der Applikation besser erfüllt. Eine unserer Grundvoraussetzungen lautet somit, dass sowohl das Dienstangebot als auch die Nachfrageseite variabel sind. Dienstorientierte Architekturen haben besonderes Gewicht in der Implementierung von Geschäftsprozessen. Im Rahmen des Paradigmas Enterprise Integration Architecture werden einzelne Arbeitsschritte als Dienste implementiert und ein Geschäftsprozess als Workflow von Diensten ausgeführt. Eine solche Dienstkomposition wird auch Orchestration genannt. Insbesondere für die so genannte B2B-Integration (Business-to-Business) sind Dienste das probate Mittel, um die Kommunikation über die Unternehmensgrenzen hinaus zu unterstützen. Dienste werden hier in der Regel als Web Services realisiert, welche vermöge BPEL4WS orchestriert werden. Der XML-basierte Nachrichtenverkehr und das http-Protokoll sorgen für eine Verträglichkeit zwischen heterogenen Systemen und eine Transparenz des Nachrichtenverkehrs. Anbieter dieser Dienste versprechen sich einen hohen Nutzen durch ihre öffentlichen Dienste. Zum einen hofft man auf eine vermehrte Einbindung ihrer Dienste in Softwareprozesse. Zum anderen setzt man auf das Entwickeln neuer Software auf Basis ihrer Dienste. In der Zukunft werden hunderte solcher Dienste verfügbar sein und es wird schwer für den Entwickler passende Dienstangebote zu finden. Das Projekt ADDO hat in diesem Umfeld wichtige Ergebnisse erzielt. Im Laufe des Projektes wurde erreicht, dass der Einsatz semantischer Spezifikationen es ermöglicht, Dienste sowohl im Hinblick auf ihre funktionalen als auch ihre nicht-funktionalen Eigenschaften, insbesondere die Dienstgüte, automatisch zu sichten und an Dienstaggregate zu binden [15]. Dazu wurden Ontologie-Schemata [10, 16], Abgleichalgorithmen [16, 9] und Werkzeuge entwickelt und als Framework implementiert [16]. Der in diesem Rahmen entwickelte Abgleichalgorithmus für Dienstgüte beherrscht die automatische Aushandlung von Verträgen für die Dienstnutzung, um etwa kostenpflichtige Dienste zur Dienstnutzung einzubinden. ADDO liefert einen Ansatz, Schablonen für Dienstaggregate in BPEL4WS zu erstellen, die zur Laufzeit automatisch verwaltet werden. Das Vorgehen konnte seine Effektivität beim internationalen Wettbewerb Web Service Challenge 2006 in San Francisco unter Beweis stellen: Der für ADDO entwickelte Algorithmus zur semantischen Dienstkomposition erreichte den ersten Platz. Der Algorithmus erlaubt es, unter einer sehr großenMenge angebotener Dienste eine geeignete Auswahl zu treffen, diese Dienste zu Dienstaggregaten zusammenzufassen und damit die Funktionalität eines vorgegebenen gesuchten Dienstes zu leisten. Weitere Ergebnisse des Projektes ADDO wurden auf internationalen Workshops und Konferenzen veröffentlicht. [12, 11]
Resumo:
In recent years, progress in the area of mobile telecommunications has changed our way of life, in the private as well as the business domain. Mobile and wireless networks have ever increasing bit rates, mobile network operators provide more and more services, and at the same time costs for the usage of mobile services and bit rates are decreasing. However, mobile services today still lack functions that seamlessly integrate into users’ everyday life. That is, service attributes such as context-awareness and personalisation are often either proprietary, limited or not available at all. In order to overcome this deficiency, telecommunications companies are heavily engaged in the research and development of service platforms for networks beyond 3G for the provisioning of innovative mobile services. These service platforms are to support such service attributes. Service platforms are to provide basic service-independent functions such as billing, identity management, context management, user profile management, etc. Instead of developing own solutions, developers of end-user services such as innovative messaging services or location-based services can utilise the platform-side functions for their own purposes. In doing so, the platform-side support for such functions takes away complexity, development time and development costs from service developers. Context-awareness and personalisation are two of the most important aspects of service platforms in telecommunications environments. The combination of context-awareness and personalisation features can also be described as situation-dependent personalisation of services. The support for this feature requires several processing steps. The focus of this doctoral thesis is on the processing step, in which the user’s current context is matched against situation-dependent user preferences to find the matching user preferences for the current user’s situation. However, to achieve this, a user profile management system and corresponding functionality is required. These parts are also covered by this thesis. Altogether, this thesis provides the following contributions: The first part of the contribution is mainly architecture-oriented. First and foremost, we provide a user profile management system that addresses the specific requirements of service platforms in telecommunications environments. In particular, the user profile management system has to deal with situation-specific user preferences and with user information for various services. In order to structure the user information, we also propose a user profile structure and the corresponding user profile ontology as part of an ontology infrastructure in a service platform. The second part of the contribution is the selection mechanism for finding matching situation-dependent user preferences for the personalisation of services. This functionality is provided as a sub-module of the user profile management system. Contrary to existing solutions, our selection mechanism is based on ontology reasoning. This mechanism is evaluated in terms of runtime performance and in terms of supported functionality compared to other approaches. The results of the evaluation show the benefits and the drawbacks of ontology modelling and ontology reasoning in practical applications.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
Enterprise-Resource-Planning-Systeme (ERP-Systeme) bilden für die meisten mittleren und großen Unternehmen einen essentiellen Bestandteil ihrer IT-Landschaft zur Verwaltung von Geschäftsdaten und Geschäftsprozessen. Geschäftsdaten werden in ERP-Systemen in Form von Geschäftsobjekten abgebildet. Ein Geschäftsobjekt kann mehrere Attribute enthalten und über Assoziationen zu anderen Geschäftsobjekten einen Geschäftsobjektgraphen aufspannen. Existierende Schnittstellen ermöglichen die Abfrage von Geschäftsobjekten, insbesondere mit Hinblick auf deren Attribute. Die Abfrage mit Bezug auf ihre Position innerhalb des Geschäftsobjektgraphen ist jedoch über diese Schnittstellen häufig nur sehr schwierig zu realisieren. Zur Vereinfachung solcher Anfragen können semantische Technologien, wie RDF und die graphbasierte Abfragesprache SPARQL, verwendet werden. SPARQL ermöglicht eine wesentlich kompaktere und intuitivere Formulierung von Anfragen gegen Geschäftsobjektgraphen, als es mittels der existierenden Schnittstellen möglich ist. Die Motivation für diese Arbeit ist die Vereinfachung bestimmter Anfragen gegen das im Rahmen dieser Arbeit betrachtete SAP ERP-System unter Verwendung von SPARQL. Zur Speicherung von Geschäftsobjekten kommen in ERP-Systemen typischerweise relationale Datenbanken zum Einsatz. Die Bereitstellung von SPARQL-Endpunkten auf Basis von relationalen Datenbanken ist ein seit längerem untersuchtes Gebiet. Es existieren verschiedene Ansätze und Tools, welche die Anfrage mittels SPARQL erlauben. Aufgrund der Komplexität, der Größe und der Änderungshäufigkeit des ERP-Datenbankschemas können solche Ansätze, die direkt auf dem Datenbankschema aufsetzen, nicht verwendet werden. Ein praktikablerer Ansatz besteht darin, den SPARQL-Endpunkt auf Basis existierender Schnittstellen zu realisieren. Diese sind weniger komplex als das Datenbankschema, da sie die direkte Abfrage von Geschäftsobjekten ermöglichen. Dadurch wird die Definition des Mappings erheblich vereinfacht. Das ERP-System bietet mehrere Schnittstellen an, die sich hinsichtlich des Aufbaus, der Zielsetzung und der verwendeten Technologie unterscheiden. Unter anderem wird eine auf OData basierende Schnittstelle zur Verfügung gestellt. OData ist ein REST-basiertes Protokoll zur Abfrage und Manipulation von Daten. Von den bereitgestellten Schnittstellen weist das OData-Interface gegenüber den anderen Schnittstellen verschiedene Vorteile bei Realisierung eines SPARQL-Endpunktes auf. Es definiert eine Abfragesprache und einen Link-Adressierungsmechanismus, mit dem die zur Beantwortung einer Anfrage benötigten Service-Aufrufe und die zu übertragende Datenmenge erheblich reduziert werden können. Das Ziel dieser Arbeit besteht in der Entwicklung eines Verfahrens zur Realisierung eines SPARQL-Endpunktes auf Basis von OData-Services. Dazu wird zunächst eine Architektur vorgestellt, die als Grundlage für die Implementierung eines entsprechenden Systems dienen kann. Ausgehend von dieser Architektur, werden die durch den aktuellen Forschungsstand noch nicht abgedeckten Bereiche ermittelt. Nach bestem Wissen ist diese Arbeit die erste, welche die Abfrage von OData-Schnittstellen mittels SPARQL untersucht. Dabei wird als Teil dieser Arbeit ein neuartiges Konzept zur semantischen Beschreibung von OData-Services vorgestellt. Dieses ermöglicht die Definition von Abbildungen der von den Services bereitgestellten Daten auf RDF-Graphen. Aufbauend auf den Konzepten zur semantischen Beschreibung wird eine Evaluierungssemantik erarbeitet, welche die Auflösung von Ausdrücken der SPARQL-Algebra gegen semantisch annotierte OData-Services definiert. Dabei werden die Daten aller OData-Services ermittelt, die zur vollständigen Abarbeitung einer Anfrage benötigt werden. Zur Abfrage der relevanten Daten wurden Konzepte zur Erzeugung der entsprechenden OData-URIs entwickelt. Das vorgestellte Verfahren wurde prototypisch implementiert und anhand zweier Anwendungsfälle für die im betrachteten Szenario maßgeblichen Servicemengen evaluiert. Mit den vorgestellten Konzepten besteht nicht nur die Möglichkeit, einen SPARQL-Endpunkt für ein ERP-System zu realisieren, vielmehr kann jede Datenquelle, die eine OData-Schnittstelle anbietet, mittels SPARQL angefragt werden. Dadurch werden große Datenmengen, die bisher für die Verarbeitung mittels semantischer Technologien nicht zugänglich waren, für die Integration mit dem Semantic Web verfügbar gemacht. Insbesondere können auch Datenquellen, deren Integration miteinander bisher nicht oder nur schwierig möglich war, über Systeme zur föderierten Abfrage miteinander integriert werden.
Resumo:
Eine wesentliche Funktionalität bei der Verwendung semantischer Technologien besteht in dem als Reasoning bezeichneten Prozess des Ableitens von impliziten Fakten aus einer explizit gegebenen Wissensbasis. Der Vorgang des Reasonings stellt vor dem Hintergrund der stetig wachsenden Menge an (semantischen) Informationen zunehmend eine Herausforderung in Bezug auf die notwendigen Ressourcen sowie der Ausführungsgeschwindigkeit dar. Um diesen Herausforderungen zu begegnen, adressiert die vorliegende Arbeit das Reasoning durch eine massive Parallelisierung der zugrunde liegenden Algorithmen und der Einführung von Konzepten für eine ressourceneffiziente Ausführung. Diese Ziele werden unter Berücksichtigung der Verwendung eines regelbasierten Systems verfolgt, dass im Gegensatz zur Implementierung einer festen Semantik die Definition der anzuwendenden Ableitungsregeln während der Laufzeit erlaubt und so eine größere Flexibilität bei der Nutzung des Systems bietet. Ausgehend von einer Betrachtung der Grundlagen des Reasonings und den verwandten Arbeiten aus den Bereichen des parallelen sowie des regelbasierten Reasonings werden zunächst die Funktionsweise von Production Systems sowie die dazu bereits existierenden Ansätze für die Optimierung und im Speziellen der Parallelisierung betrachtet. Production Systems beschreiben die grundlegende Funktionalität der regelbasierten Verarbeitung und sind somit auch die Ausgangsbasis für den RETE-Algorithmus, der zur Erreichung der Zielsetzung der vorliegenden Arbeit parallelisiert und für die Ausführung auf Grafikprozessoren (GPUs) vorbereitet wird. Im Gegensatz zu bestehenden Ansätzen unterscheidet sich die Parallelisierung insbesondere durch die gewählte Granularität, die nicht durch die anzuwendenden Regeln, sondern von den Eingabedaten bestimmt wird und sich damit an der Zielarchitektur orientiert. Aufbauend auf dem Konzept der parallelen Ausführung des RETE-Algorithmus werden Methoden der Partitionierung und Verteilung der Arbeitslast eingeführt, die zusammen mit Konzepten der Datenkomprimierung sowie der Verteilung von Daten zwischen Haupt- und Festplattenspeicher ein Reasoning über Datensätze mit mehreren Milliarden Fakten auf einzelnen Rechnern erlauben. Eine Evaluation der eingeführten Konzepte durch eine prototypische Implementierung zeigt für die adressierten leichtgewichtigen Ontologiesprachen einerseits die Möglichkeit des Reasonings über eine Milliarde Fakten auf einem Laptop, was durch die Reduzierung des Speicherbedarfs um rund 90% ermöglicht wird. Andererseits kann der dabei erzielte Durchsatz mit aktuellen State of the Art Reasonern verglichen werden, die eine Vielzahl an Rechnern in einem Cluster verwenden.
Resumo:
Many online services access a large number of autonomous data sources and at the same time need to meet different user requirements. It is essential for these services to achieve semantic interoperability among these information exchange entities. In the presence of an increasing number of proprietary business processes, heterogeneous data standards, and diverse user requirements, it is critical that the services are implemented using adaptable, extensible, and scalable technology. The COntext INterchange (COIN) approach, inspired by similar goals of the Semantic Web, provides a robust solution. In this paper, we describe how COIN can be used to implement dynamic online services where semantic differences are reconciled on the fly. We show that COIN is flexible and scalable by comparing it with several conventional approaches. With a given ontology, the number of conversions in COIN is quadratic to the semantic aspect that has the largest number of distinctions. These semantic aspects are modeled as modifiers in a conceptual ontology; in most cases the number of conversions is linear with the number of modifiers, which is significantly smaller than traditional hard-wiring middleware approach where the number of conversion programs is quadratic to the number of sources and data receivers. In the example scenario in the paper, the COIN approach needs only 5 conversions to be defined while traditional approaches require 20,000 to 100 million. COIN achieves this scalability by automatically composing all the comprehensive conversions from a small number of declaratively defined sub-conversions.
Resumo:
Each player in the financial industry, each bank, stock exchange, government agency, or insurance company operates its own financial information system or systems. By its very nature, financial information, like the money that it represents, changes hands. Therefore the interoperation of financial information systems is the cornerstone of the financial services they support. E-services frameworks such as web services are an unprecedented opportunity for the flexible interoperation of financial systems. Naturally the critical economic role and the complexity of financial information led to the development of various standards. Yet standards alone are not the panacea: different groups of players use different standards or different interpretations of the same standard. We believe that the solution lies in the convergence of flexible E-services such as web-services and semantically rich meta-data as promised by the semantic Web; then a mediation architecture can be used for the documentation, identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous financial services. In this paper we illustrate the nature of the problem in the Electronic Bill Presentment and Payment (EBPP) industry and the viability of the solution we propose. We describe and analyze the integration of services using four different formats: the IFX, OFX and SWIFT standards, and an example proprietary format. To accomplish this integration we use the COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and receivers’ contexts in reference to a rich domain model or ontology for the description and resolution of semantic heterogeneity.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
Resource for Info2009 Coursework 2 - Group: InfoS