939 resultados para Seismic zone
Resumo:
The south-western part of the Iberian Peninsula, including the southern branch of the Iberian Massif, has recently been the subject of several magnetotelluric (MT) studies. This area is made up of three different tectonic terranes: the South Portuguese Zone (SPZ), the Ossa Morena Zone (OMZ) and the Central Iberian Zone (CIZ). The boundaries between these zones are considered to be sutures, which appear as high electrical conductivity anomalies in the MT surveys. The OMZ is characterised by a conductive layer at middle-lower crustal levels. To investigate the continuity of this conductive layer into the CIZ, a new MT profile was carried out. This 75-km long ENE profile goes through the boundary between the OMZ and the CIZ. The results of a two-dimensional magnetotelluric inversion revealed a high-conductivity anomaly in the transition OMZ/CIZ (the so-called Central Unit), which is interpreted as due to interconnected graphite along shear planes. High-conductivity anomalies appeared in the middle crust of the CIZ, whose geometry and location are consistent with the conductive layer previously found in the OMZ, thus confirming the prolongation of the conductive layer into the CIZ. The top of this layer correlated spatially with a broad reflector detected by a seismic profile previously acquired in the same area. This, together with other geological and petrological evidence, points to a common origin for both features.
Resumo:
The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gulf of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluidsand melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% will explain 100-500 ohm·m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at deeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites.
Resumo:
The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.
Resumo:
The metamorphism of the carbonate rocks of the SE Zanskar Tibetan zone has been studied by `'illite crystallinity'' and calcite-dolomite thermometry. The epizonal Zangla unit overlies the anchizonal Chumik unit. This discontinuous inverse zonation demonstrates a late to post-metamorphic thrust of the first unit over the second. The studied area underwent a complex tectonic history: - The tectonic units were stacked from the NE to the SW, generating recumbent folds, NE dipping thrusts and the regional metamorphism. The compressive movements were active under lower temperature conditions, resulting in late thrusts that disturbed the metamorphic zonation. The discontinuous inverse metamorphic zonation dates from this phase. - A NE vergent backfolding phase occurred at lower temperature conditions. It caused the uplift of more metamorphic levels. - A late extensional phase is revealed by the presence of NE dipping low angle normal faults, and a major high angle fault, the Sarchu fault. The low angle normal faults locally run along earlier thrusts (composite tectonic contacts). Their throw has been sufficient to reset a normal stratigraphic superposition (young layers overlying old ones), but insufficient to erase the inverse metamorphic relationship. However, the combined action of backfolding and normal faulting can locally lessen, or even cancel, the inverse metamorphic superposition. After deduction of the normal fault translation, the vertical component of the original thrust displacement through stratigraphy is 400 m, which is a value far too low to explain the temperature difference between the two units. The horizontal component of displacement is therefore far more important than the vertical one. The regional distribution of metamorphism within the Zangla unit points out to an anchizonal front and an epizonal inner part. This fact is in agreement with nappe tectonics.
Resumo:
In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time information to travelers, monitoring traffic conditions, and managing incidents. Although there have been numerous ITS deployments in work zones, a framework for evaluating the effectiveness of these deployments does not exist. To justify the continued development and implementation of smart work zone systems, this study developed a framework to determine ITS effectiveness for specific work zone projects. The framework recommends using one or more of five performance measures: diversion rate, delay time, queue length, crash frequency, and speed. The monetary benefits and costs of ITS deployment in a work zone can then be computed using the performance measure values. Such ITS computations include additional considerations that are typically not present in standard benefit-cost computations. The proposed framework will allow for consistency in performance measures across different ITS studies thus allowing for comparisons across studies or for meta analysis. In addition, guidance on the circumstances under which ITS deployment is recommended for a work zone is provided. The framework was illustrated using two case studies: one urban work zone on I-70 and one rural work zone on I-44, in Missouri. The goals of the two ITS deployments were different – the I-70 ITS deployment was targeted at improving mobility whereas the I-44 deployment was targeted at improving safety. For the I-70 site, only permanent ITS equipment that was already in place was used for the project and no temporary ITS equipment was deployed. The permanent DMS equipment serves multiple purposes, and it is arguable whether that cost should be attributed to the work zone project. The data collection effort for the I-70 site was very significant as portable surveillance captured the actual diversion flows to alternative routes. The benefit-cost ratio for the I-70 site was 2.1 to 1 if adjusted equipment costs were included and 6.9 to 1 without equipment costs. The safety-focused I-44 ITS deployment had an estimated benefit-cost ratio of 3.2 to 1.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.
Resumo:
Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.
Resumo:
Work-related flow is defined as a sudden and enjoyable merging of action and awareness that represents a peak experience in the daily lives of workers. Employees" perceptions of challenge and skill and their subjective experiences in terms of enjoyment, interest and absorption were measured using the experience sampling method, yielding a total of 6981 observations from a sample of 60 employees. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes. According to the R2, AICc and BIC indexes, the nonlinear dynamical systems model (i.e. cusp catastrophe model) fit the data better than the linear and logistic regression models. Likewise, the cusp catastrophe model appears to be especially powerful for modelling those cases of high levels of flow. Overall, flow represents a nonequilibrium condition that combines continuous and abrupt changes across time. Research and intervention efforts concerned with this process should focus on the variable of challenge, which, according to our study, appears to play a key role in the abrupt changes observed in work-related flow.
Resumo:
A defining characteristic of fractured rocks is their very high level of seismic attenuation, which so far has been assumed to be mainly due to wave-induced fluid flow (WIFF) between the fractures and the pore space of the embedding matrix. Using oscillatory compressibility simulations based on the quasi-static poroelastic equations, we show that another important, and as of yet undocumented, manifestation of WIFF is at play in the presence of fracture connectivity. This additional energy loss is predominantly due to fluid flow within the connected fractures and is sensitive to their lengths, permeabilities, and intersection angles. Correspondingly, it contains key information on the governing hydraulic properties of fractured rock masses and hence should be accounted for whenever realistic seismic models of such media are needed.
Resumo:
Joint inversion of crosshole ground-penetrating radar and seismic data can improve model resolution and fidelity of the resultant individual models. Model coupling obtained by minimizing or penalizing some measure of structural dissimilarity between models appears to be the most versatile approach because only weak assumptions about petrophysical relationships are required. Nevertheless, experimental results and petrophysical arguments suggest that when porosity variations are weak in saturated unconsolidated environments, then radar wave speed is approximately linearly related to seismic wave speed. Under such circumstances, model coupling also can be achieved by incorporating cross-covariances in the model regularization. In two case studies, structural similarity is imposed by penalizing models for which the model cross-gradients are nonzero. A first case study demonstrates improvements in model resolution by comparing the resulting models with borehole information, whereas a second case study uses point-spread functions. Although radar seismic wavespeed crossplots are very similar for the two case studies, the models plot in different portions of the graph, suggesting variances in porosity. Both examples display a close, quasilinear relationship between radar seismic wave speed in unconsolidated environments that is described rather well by the corresponding lower Hashin-Shtrikman (HS) bounds. Combining crossplots of the joint inversion models with HS bounds can constrain porosity and pore structure better than individual inversion results can.
Resumo:
The incomplete Evros ophiolites in NE Greece form a NE-SW-oriented discontinuous belt in the Alpine orogen of the north Aegean. Field data, petrology and geochemistry are presented here for the intrusive section and associated mafic dykes of these ophiolites. Bodies of high-level isotropic gabbro and plagiogranite in the ophiolite suite are cross-cut by NE-SW-trending boninitic and tholeiitic-boninitic affinity dykes, respectively. The dykes fill tensile fractures or faults, which implies dyke emplacement in an extensional tectonic regime. The tholeiitic-transitional boninitic gabbro is REE- and HFS-depleted relative to N-MORB, indicating derivation from melting of a refractory mantle peridotite source. Associated boninitic dykes are slightly LREE-enriched, showing mineral and whole-rock geochemistry similar to the gabbro. The plagiogranite is a strongly REE-enriched high-silica trondhjemite, with textures and composition typical for an oceanic crust differentiate. Plagiogranite-hosted tholeiitic and transitional boninitic dykes are variably REE-enriched. Geochemical modelling indicates origin of the plagiogranite by up to 75% fractional crystallization of basaltic magma similar to that producing the associated tholeiitic dykes. All mafic rocks have high LILE/HFSE ratios and negative Ta-Nb-Ti and Ce anomalies, typical for subduction zone-related settings. The mafic rocks show a similar trace-element character to the mafic lavas of an extrusive section in Bulgaria, suggesting they both form genetically related intrusive and extrusive suites of the Evros ophiolites. The field occurrence, the structural context, the petrology and geochemical signature of the studied magmatic assemblage provide evidence for its origin in a proto-arc (fore-arc) tectonic setting, thus tracing the early stages of the tectono-magmatic evolution of Jurassic arc-marginal basin system that has generated the supra-subduction type Evros ophiolites.