959 resultados para Scotia (Ship)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA barcoding revealed four well-supported clades among amphipod specimens that keyed out to Epimeria georgiana Schellenberg, 1931, three clades with specimens from the southern Scotia Arc and one clade with specimens from the Weddell Sea. Detailed morphological investigations of sequenced specimens were conducted, through light and scanning electron microscopy. High magnification (500-2,000 fold) revealed features such as comb-scales on the first antenna and trich bearing pits on the fourth coxal plate to be similar for all specimens in the four clades. Consistent microstructure character differences in the Weddell Sea specimens combined with high genetic distances (COI divergence>20%) allowed the description of Epimeria angelikae, a species new to science. Specimens of E. georgiana in the other three COI clades from the Scotia Arc were morphologically indistinguishable. Representative specimens of clade A are also illustrated in detail. Our results on the high genetic divergences in epimeriid amphipods support the theory of the southern Scotia Arc being a centre of Antarctic diversification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present biogenic opal flux records from two deep-sea sites in the Scotia Sea (MD07-3133 and MD07-3134) at decadal-scale resolution, covering the last glacial cycle. Besides conventional and time-consuming biogenic opal measuring methods, we introduce new biogenic opal estimation methods derived from sediment colour b*, wet bulk density, Si/Ti-count ratio, and Fourier transform infrared spectroscopy (FTIRS). All methods capture the biogenic opal amplitude, however, FTIRS - a novel method for marine sediment - yields the most reliable results. 230Th normalization data show strong differences in sediment focusing with intensified sediment focusing during glacial times. At MD07-3134 230Th normalized biogenic opal fluxes vary between 0.2 and 2.5 g/cm2/kyr. Our biogenic opal flux records indicate bioproductivity changes in the Southern Ocean, strongly influenced by sea ice distribution and also summer sea surface temperature changes. South of the Antarctic Polar Front, lowest bioproductivity occurred during the Last Glacial Maximum when upwelling of mid-depth water was reduced and sea ice cover intensified. Around 17 ka, bioproductivity increased abruptly, corresponding to rising atmospheric CO2 contents and decreasing seasonal sea ice coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[From Jasper Cropsey Sketch book, 1855-1856]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[From Jasper Cropsey Sketch book, 1855-1856]

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Authors: J. Christopher Hewlett, Kathren M. Eagles, Carl J. Huval, Larry L. Daggett.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes index.