762 resultados para SUBSTRATE RECOGNITION
Resumo:
Recognition systems play a key role in a range of biological processes, including mate choice, immune defence and altruistic behaviour. Social insects provide an excellent model for studying recognition systems because workers need to discriminate between nestmates and non-nestmates, enabling them to direct altruistic behaviour towards closer kin and to repel potential invaders. However, the level of aggression directed towards conspecific intruders can vary enormously, even among workers within the same colony. This is usually attributed to differences in the aggression thresholds of individuals or to workers having different roles within the colony. Recent evidence from the weaver ant Oecophylla smaragdina suggests that this does not tell the whole story. Here I propose a new model for nestmate recognition based on a vector template derived from both the individual's innate odour and the shared colony odour. This model accounts for the recent findings concerning weaver ants, and also provides an alternative explanation for why the level of aggression expressed by a colony decreases as the diversity within the colony increases, even when odour is well-mixed. The model makes additional predictions that are easily tested, and represents a significant advance in our conceptualisation of recognition systems.
Resumo:
In a series of three experiments, participants made inferences about which one of a pair of two objects scored higher on a criterion. The first experiment was designed to contrast the prediction of Probabilistic Mental Model theory (Gigerenzer, Hoffrage, & Kleinbölting, 1991) concerning sampling procedure with the hard-easy effect. The experiment failed to support the theory's prediction that a particular pair of randomly sampled item sets would differ in percentage correct; but the observation that German participants performed practically as well on comparisons between U.S. cities (many of which they did not even recognize) than on comparisons between German cities (about which they knew much more) ultimately led to the formulation of the recognition heuristic. Experiment 2 was a second, this time successful, attempt to unconfound item difficulty and sampling procedure. In Experiment 3, participants' knowledge and recognition of each city was elicited, and how often this could be used to make an inference was manipulated. Choices were consistent with the recognition heuristic in about 80% of the cases when it discriminated and people had no additional knowledge about the recognized city (and in about 90% when they had such knowledge). The frequency with which the heuristic could be used affected the percentage correct, mean confidence, and overconfidence as predicted. The size of the reference class, which was also manipulated, modified these effects in meaningful and theoretically important ways.
Resumo:
To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age.
Resumo:
We investigate the coevolution between philopatry and altruism in island-model populations when kin recognition occurs through phenotype matching. In saturated environments, a good discrimination ability is a necessary prerequisite for the emergence of sociality. Discrimination decreases not only with the average phenotypic similarity between immigrants and residents (i.e., with environmental homogeneity and past gene flow) but also with the sampling variance of similarity distributions (a negative function of the number of traits sampled). Whether discrimination should rely on genetically or environmentally determined traits depends on the apportionment of phenotypic variance and, in particular, on the relative values of e (the among-group component of environmental variance) and r (the among-group component of genetic variance, which also measures relatedness among group members). If r exceeds e, highly heritable cues do better. Discrimination and altruism, however, remain low unless philopatry is enforced by ecological constraints. If e exceeds r, by contrast, nonheritable traits do better. High e values improve discrimination drastically and thus have the potential to drive sociality, even in the absence of ecological constraints. The emergence of sociality thus can be facilitated by enhancing e, which we argue is the main purpose of cue standardization within groups, as observed in many social insects, birds, and mammals, including humans.
Resumo:
The ability of group members to discriminate against foreigners is a keystone in the evolution of sociality. In social insects, colony social structure (number of queens) is generally thought to influence abilities of resident workers to discriminate between nestmates and non-nestmates. However, whether social origin of introduced individuals has an effect on their acceptance in conspecific colonies remains poorly explored. Using egg-acceptance bioassays, we tested the influence of social origin of queen-laid eggs on their acceptance by foreign workers in the ant Formica selysi. We showed that workers from both single- and multiple-queen colonies discriminated against foreign eggs from single-queen colonies, whereas they surprisingly accepted foreign eggs from multiple-queen colonies. Chemical analyses then demonstrated that social origins of eggs and workers could be discriminated on the basis of their chemical profiles, a signal generally involved in nestmate discrimination. These findings provide the first evidence in social insects that social origins of eggs interfere with nestmate discrimination and are encoded by chemical signatures.
Resumo:
The methodology for generating a homology model of the T1 TCR-PbCS-K(d) class I major histocompatibility complex (MHC) class I complex is presented. The resulting model provides a qualitative explanation of the effect of over 50 different mutations in the region of the complementarity determining region (CDR) loops of the T cell receptor (TCR), the peptide and the MHC's alpha(1)/alpha(2) helices. The peptide is modified by an azido benzoic acid photoreactive group, which is part of the epitope recognized by the TCR. The construction of the model makes use of closely related homologs (the A6 TCR-Tax-HLA A2 complex, the 2C TCR, the 14.3.d TCR Vbeta chain, the 1934.4 TCR Valpha chain, and the H-2 K(b)-ovalbumine peptide), ab initio sampling of CDR loops conformations and experimental data to select from the set of possibilities. The model shows a complex arrangement of the CDR3alpha, CDR1beta, CDR2beta and CDR3beta loops that leads to the highly specific recognition of the photoreactive group. The protocol can be applied systematically to a series of related sequences, permitting the analysis at the structural level of the large TCR repertoire specific for a given peptide-MHC complex.
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.
Resumo:
The coreid Leptoglossus zonatus (Dallas, 1852) is commonly found in corn (Zea mays L.) fields in Brazil, and it has been observed flying and landing on objects or persons near these fields. During January, 1995, this behavior was studied in corn plantations. Results indicated that the bugs concentrated on objects (plastic cylinders traps) introduced into their habitat and that their number increased during the first 24 hs. However, as time passed (8 days), this possible territorial or recognition behavior gradually decreased, and tended to disappear.
Resumo:
Avidity of Ag recognition by tumor-specific T cells is one of the main parameters that determines the potency of a tumor rejection Ag. In this study we show that the relative efficiency of staining of tumor Ag-specific T lymphocytes with the corresponding fluorescent MHC class I/peptide multimeric complexes can considerably vary with staining conditions and does not necessarily correlate with avidity of Ag recognition. Instead, we found a clear correlation between avidity of Ag recognition and the stability of MHC class I/peptide multimeric complexes interaction with TCR as measured in dissociation kinetic experiments. These findings are relevant for both identification and isolation of tumor-reactive CTL.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Resumo:
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis.
Resumo:
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.